Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147529 by mathdanisur last updated on 21/Jul/21

if   a_(n+1)  = (√(a_1  + a_n ))  find  lim_(x→∞) a_n  = ?

$${if}\:\:\:{a}_{\boldsymbol{{n}}+\mathrm{1}} \:=\:\sqrt{{a}_{\mathrm{1}} \:+\:{a}_{\boldsymbol{{n}}} } \\ $$$${find}\:\:\underset{\boldsymbol{{x}}\rightarrow\infty} {{lim}a}_{\boldsymbol{{n}}} \:=\:? \\ $$

Commented by mathdanisur last updated on 21/Jul/21

Sorry  a_1  = 12

$${Sorry}\:\:\boldsymbol{{a}}_{\mathrm{1}} \:=\:\mathrm{12} \\ $$

Answered by gsk2684 last updated on 21/Jul/21

L=lim_(n→∞) a_(n+1) =lim_(n→∞) (√(a_1 +a_n ))>0  L=(√(a_1 +L))  L^2 −L−a_1 =0  L=((1±(√(1+4a_1 )))/2)>0  L=((1+(√(1+4a_1 )))/2)=((1+(√(1+48)))/2)=4

$${L}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}+\mathrm{1}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\sqrt{{a}_{\mathrm{1}} +{a}_{{n}} }>\mathrm{0} \\ $$$${L}=\sqrt{{a}_{\mathrm{1}} +{L}} \\ $$$${L}^{\mathrm{2}} −{L}−{a}_{\mathrm{1}} =\mathrm{0} \\ $$$${L}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}{a}_{\mathrm{1}} }}{\mathrm{2}}>\mathrm{0} \\ $$$${L}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4}{a}_{\mathrm{1}} }}{\mathrm{2}}=\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{48}}}{\mathrm{2}}=\mathrm{4} \\ $$

Commented by Snail last updated on 21/Jul/21

You are technically wrong in the second line  while writing L u havd to show at first the seq  is either monotonic increasing or decreasing

$${You}\:{are}\:{technically}\:{wrong}\:{in}\:{the}\:{second}\:{line} \\ $$$${while}\:{writing}\:{L}\:{u}\:{havd}\:{to}\:{show}\:{at}\:{first}\:{the}\:{seq} \\ $$$${is}\:{either}\:{monotonic}\:{increasing}\:{or}\:{decreasing} \\ $$

Answered by Snail last updated on 21/Jul/21

Claim a_(n+1) ≥a_n   Go through basic steps of induction   and then  For ( m+1) case   we have    a_(m+1) ≥a_m     (√()a_1 +a_(m+1) )≥(√()a_1 +a_(m ) )  a_(m+2) ≥a_m          hence the seq is monotonic increas  Now u can do as like it is done

$${Claim}\:{a}_{{n}+\mathrm{1}} \geqslant{a}_{{n}} \\ $$$${Go}\:{through}\:{basic}\:{steps}\:{of}\:{induction}\: \\ $$$${and}\:{then} \\ $$$${For}\:\left(\:{m}+\mathrm{1}\right)\:{case}\: \\ $$$${we}\:{have}\:\:\:\:{a}_{{m}+\mathrm{1}} \geqslant{a}_{{m}} \\ $$$$ \\ $$$$\left.\sqrt{\left(\right.}\left.{a}_{\mathrm{1}} +{a}_{{m}+\mathrm{1}} \right)\geqslant\sqrt{\left(\right.}{a}_{\mathrm{1}} +{a}_{{m}\:} \right) \\ $$$${a}_{{m}+\mathrm{2}} \geqslant{a}_{{m}} \:\:\:\:\:\:\:\:\:{hence}\:{the}\:{seq}\:{is}\:{monotonic}\:{increas} \\ $$$${Now}\:{u}\:{can}\:{do}\:{as}\:{like}\:{it}\:{is}\:{done} \\ $$

Commented by gsk2684 last updated on 21/Jul/21

yes , thank you

$${yes}\:,\:{thank}\:{you} \\ $$

Answered by mathmax by abdo last updated on 21/Jul/21

a_(n+1) =f(a_n ) with f(x)=(√(x+12))      (a_1 =12)  f is defined continue  on[−12,+∞[  f^′ (x)=(1/(2(√(x+12)))) >0 ⇒f is increazing on]−12,+∞[  so lim_(n→+∞) a_n =x_0    / f(x_0 )=x_0     (fix point of f)  ⇒x_0 =(√(x_0 +12)) ⇒x_0 ^2 −x_0 −12=0  Δ=1+4(12)=49 ⇒x_1 =((1+7)/2)=4  and x_2 =((1−7)/2)=−3<0  let prove[that a_n >0 ∀n  a_2 =(√(a_1 +12))>0  (true) let suppose a_n >0 ⇒  a_(n+1) =(√(a_n +12))>0 ⇒lim_(n→+∞) a_n =4

$$\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\mathrm{f}\left(\mathrm{a}_{\mathrm{n}} \right)\:\mathrm{with}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{x}+\mathrm{12}}\:\:\:\:\:\:\left(\mathrm{a}_{\mathrm{1}} =\mathrm{12}\right) \\ $$$$\mathrm{f}\:\mathrm{is}\:\mathrm{defined}\:\mathrm{continue}\:\:\mathrm{on}\left[−\mathrm{12},+\infty\left[\right.\right. \\ $$$$\left.\mathrm{f}^{'} \left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}+\mathrm{12}}}\:>\mathrm{0}\:\Rightarrow\mathrm{f}\:\mathrm{is}\:\mathrm{increazing}\:\mathrm{on}\right]−\mathrm{12},+\infty\left[\right. \\ $$$$\mathrm{so}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{a}_{\mathrm{n}} =\mathrm{x}_{\mathrm{0}} \:\:\:/\:\mathrm{f}\left(\mathrm{x}_{\mathrm{0}} \right)=\mathrm{x}_{\mathrm{0}} \:\:\:\:\left(\mathrm{fix}\:\mathrm{point}\:\mathrm{of}\:\mathrm{f}\right) \\ $$$$\Rightarrow\mathrm{x}_{\mathrm{0}} =\sqrt{\mathrm{x}_{\mathrm{0}} +\mathrm{12}}\:\Rightarrow\mathrm{x}_{\mathrm{0}} ^{\mathrm{2}} −\mathrm{x}_{\mathrm{0}} −\mathrm{12}=\mathrm{0} \\ $$$$\Delta=\mathrm{1}+\mathrm{4}\left(\mathrm{12}\right)=\mathrm{49}\:\Rightarrow\mathrm{x}_{\mathrm{1}} =\frac{\mathrm{1}+\mathrm{7}}{\mathrm{2}}=\mathrm{4}\:\:\mathrm{and}\:\mathrm{x}_{\mathrm{2}} =\frac{\mathrm{1}−\mathrm{7}}{\mathrm{2}}=−\mathrm{3}<\mathrm{0} \\ $$$$\mathrm{let}\:\mathrm{prove}\left[\mathrm{that}\:\mathrm{a}_{\mathrm{n}} >\mathrm{0}\:\forall\mathrm{n}\right. \\ $$$$\mathrm{a}_{\mathrm{2}} =\sqrt{\mathrm{a}_{\mathrm{1}} +\mathrm{12}}>\mathrm{0}\:\:\left(\mathrm{true}\right)\:\mathrm{let}\:\mathrm{suppose}\:\mathrm{a}_{\mathrm{n}} >\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\sqrt{\mathrm{a}_{\mathrm{n}} +\mathrm{12}}>\mathrm{0}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{a}_{\mathrm{n}} =\mathrm{4} \\ $$

Commented by mathdanisur last updated on 21/Jul/21

thank you Sir

$${thank}\:{you}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com