Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147557 by mathdanisur last updated on 21/Jul/21

Simlify  (((1+(√x))/( (√(1+x)))) − ((√(1+x))/(1+(√x))))^2 - (((1−(√x))/( (√(1+x)))) − ((√(1+x))/(1−(√x))))^2

Simlify(1+x1+x1+x1+x)2(1x1+x1+x1x)2

Answered by Rasheed.Sindhi last updated on 21/Jul/21

(((1+(√x))/( (√(1+x)))) _(a) − ((√(1+x))/(1+(√x))))^2 - (((1−(√x))/( (√(1+x))))_(b)  − ((√(1+x))/(1−(√x))))^2   (a−(1/a))^2 −(b−(1/b))^2   ={(a−(1/a))−(b−(1/b))}{(a−(1/a))+(b−(1/b))}  =(a−b−(1/a)+(1/b))(a+b−(1/a)−(1/b))  =(a−b+((a−b)/(ab)))(a+b−((a+b)/(ab)))  =(a−b)(a+b)(1+(1/(ab)))(1−(1/(ab)))  =(a^2 −b^2 )( 1−((1/a))^2 ((1/b))^2  )   {(((1+(√x))/( (√(1+x)))))^2 −(((1−(√x))/( (√(1+x)))))^2 }                    ×{1−(((√(1+x))/(1+(√x))))^2 (((√(1+x))/(1−(√x))))^2 }   ={(((1+(√x))^2 −(1−(√x))^2 )/( 1+x))}                    ×{1−(((√(1+x))/(1+(√x))))^2 (((√(1+x))/(1−(√x))))^2 }   ={((1+x+2(√x)−1−x+2(√x))/( 1+x))}                    ×{1−(((1+x)^2 )/((1−x)^2 ))}  =((4(√x))/(1+x))×(((1−x)^2 −(1+x)^2 )/((1−x)^2 ))  =((4(√x))/(1+x))×((1−2x+x^2 −1−2x−x^2 )/((1−x)^2 ))  =((4(√x))/(1+x))×((−4x)/((1−x)^2 ))=−((16x(√x))/((1+x)(1−x)^2 ))

(1+x1+xa1+x1+x)2(1x1+xb1+x1x)2(a1a)2(b1b)2={(a1a)(b1b)}{(a1a)+(b1b)}=(ab1a+1b)(a+b1a1b)=(ab+abab)(a+ba+bab)=(ab)(a+b)(1+1ab)(11ab)=(a2b2)(1(1a)2(1b)2){(1+x1+x)2(1x1+x)2}×{1(1+x1+x)2(1+x1x)2}={(1+x)2(1x)21+x}×{1(1+x1+x)2(1+x1x)2}={1+x+2x1x+2x1+x}×{1(1+x)2(1x)2}=4x1+x×(1x)2(1+x)2(1x)2=4x1+x×12x+x212xx2(1x)2=4x1+x×4x(1x)2=16xx(1+x)(1x)2

Commented by mathdanisur last updated on 21/Jul/21

Thankyou Sir, please note the answer  too please if possible

ThankyouSir,pleasenotetheanswertoopleaseifpossible

Commented by mathdanisur last updated on 22/Jul/21

thank you Sir

thankyouSir

Answered by liberty last updated on 22/Jul/21

 (√x) = u   ⇒(((1+u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1+u)))^2 −(((1−u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1−u)))^2 =  (((1+u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1+u))+((1−u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1−u)) )(((1+u)/( (√(1+u^2 ))))−((√(1+u^2 ))/(1+u))−((1−u)/( (√(1+u^2 ))))+((√(1+u^2 ))/(1−u)) )  =((2/( (√(1+u^2 )))) −(√(1+u^2 )) ((1/(1+u))+(1/(1−u))))(((2u)/( (√(1+u^2 )))) +(√(1+u^2 ))((1/(1−u))−(1/(1+u))))  = ((2/( (√(1+u^2 ))))−((2(√(1+u^2 )))/(1−u^2 )) )(((2u)/( (√(1+u^2 ))))+((2u(√(1+u^2 )))/(1−u^2 )) )  = (((2−2u^2 −2−2u^2 )/((1−u^2 )(√(1+u^2 )))))(((2u−2u^3 +2u+2u^3 )/((1−u^2 )(√(1+u^2 )))) )  = (((−4u^2 )/((1−u^2 )(√(1+u^2 )))))(((4u)/((1−u^2 )(√(1+u^2 )))))  = ((−16u^3 )/((1−u^2 )^2 (1+u^2 )))  = ((−16x(√x))/((1−x)^2 (1+x))) .

x=u(1+u1+u21+u21+u)2(1u1+u21+u21u)2=(1+u1+u21+u21+u+1u1+u21+u21u)(1+u1+u21+u21+u1u1+u2+1+u21u)=(21+u21+u2(11+u+11u))(2u1+u2+1+u2(11u11+u))=(21+u221+u21u2)(2u1+u2+2u1+u21u2)=(22u222u2(1u2)1+u2)(2u2u3+2u+2u3(1u2)1+u2)=(4u2(1u2)1+u2)(4u(1u2)1+u2)=16u3(1u2)2(1+u2)=16xx(1x)2(1+x).

Commented by mathdanisur last updated on 22/Jul/21

thank you Sir

thankyouSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com