All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 147572 by liberty last updated on 22/Jul/21
∑n⩾14n−3(n2+2n)(n+3)=?
Answered by mathmax by abdo last updated on 22/Jul/21
letS=∑n=1∞4n−3n(n+2)(n+3)letdecomposeF(x)=4x−3x(x+2)(x+3)F(x)=ax+bx+2+cx+3a=−36=−12,b=−11(−2)(1)=112,c=−15(−3)(−1)=−5⇒F(x)=−12x+112(x+2)−5x+3⇒∑k=1nF(k)=−12∑k=1n1k+112∑k=1n1k+2−5∑k=1n1k+3=Sn∑k=1n1k=Hn,∑k=1n1k+2=∑k=3n+21k=Hn+2−32∑k=1n1k+3=∑k=1n+41k=Hn+4−32−13=Hn+4−116⇒Sn=−12Hn+112(Hn+2−32)−5(Hn+4−116)=−12Hn+112Hn+2−334+5Hn+4−556Sn=−12(logn+γ+o(1n)+112(log(n+2)+γ+o(1n+2))−5(log(n+4)+γ+o(1n+4))−334+556⇒Sn∼−12logn−γ2+112logn+112log(1+2n)+11γ2−5log(n)−5log(1+4n)−5γ−334+556⇒Sn∼112log(1+2n)−5log(1+4n)−334+556⇒limn→∞Sn=556−334
Answered by qaz last updated on 22/Jul/21
∑∞n=14n−3n(n+2)(n+3)=∑∞n=1(−12n+112⋅1n+2−5⋅1n+3)=∑∞n=0(−12⋅1n+1+112⋅1n+3−5⋅1n+4)=∑∞n=0(−12∫01xndx+112∫01xn+2dx−5∫01xn+3dx)=−12∫01dx1−xdx+112∫01x21−xdx−5∫01x31−xdx=12∫01−1+11x2−10x31−xdx=−12∫01(1+x−10x2)dx=1112
Terms of Service
Privacy Policy
Contact: info@tinkutara.com