Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147572 by liberty last updated on 22/Jul/21

   Σ_(n≥1)  ((4n−3)/((n^2 +2n)(n+3))) =?

n14n3(n2+2n)(n+3)=?

Answered by mathmax by abdo last updated on 22/Jul/21

let S=Σ_(n=1) ^∞  ((4n−3)/(n(n+2)(n+3)))  let decompose F(x)=((4x−3)/(x(x+2)(x+3)))  F(x)=(a/x)+(b/(x+2))+(c/(x+3))  a=((−3)/6)=−(1/2)  , b=((−11)/((−2)(1)))=((11)/2)  , c=((−15)/((−3)(−1)))=−5 ⇒  F(x)=−(1/(2x)) +((11)/(2(x+2))) −(5/(x+3)) ⇒  Σ_(k=1) ^(n )  F(k) =−(1/2)Σ_(k=1) ^(n ) (1/k) +((11)/2)Σ_(k=1) ^n  (1/(k+2)) −5Σ_(k=1) ^n  (1/(k+3))=S_n   Σ_(k=1) ^n  (1/k)=H_n ,Σ_(k=1) ^n  (1/(k+2))=Σ_(k=3) ^(n+2)  (1/k)=H_(n+2) −(3/2)  Σ_(k=1) ^n  (1/(k+3))=Σ_(k=1) ^(n+4)  (1/k)=H_(n+4) −(3/2)−(1/3)=H_(n+4) −((11)/6) ⇒  S_n =−(1/2)H_n  +((11)/2)(H_(n+2) −(3/2))−5(H_(n+4) −((11)/6))  =−(1/2)H_n +((11)/2)H_(n+2) −((33)/4) +5H_(n+4) −((55)/6)  S_n =−(1/2)(logn +γ +o((1/n))+((11)/2)(log(n+2)+γ +o((1/(n+2))))  −5(log(n+4)+γ +o((1/(n+4))))−((33)/4)+((55)/6) ⇒  S_n ∼−(1/2)logn−(γ/2) +((11)/2)logn+((11)/2)log(1+(2/n))+((11γ)/2) −5log(n)−5log(1+(4/n))  −5γ−((33)/4)+((55)/6) ⇒S_n ∼((11)/2)log(1+(2/n))−5log(1+(4/n))−((33)/4)+((55)/6) ⇒  lim_(n→∞)  S_n =((55)/6)−((33)/4)

letS=n=14n3n(n+2)(n+3)letdecomposeF(x)=4x3x(x+2)(x+3)F(x)=ax+bx+2+cx+3a=36=12,b=11(2)(1)=112,c=15(3)(1)=5F(x)=12x+112(x+2)5x+3k=1nF(k)=12k=1n1k+112k=1n1k+25k=1n1k+3=Snk=1n1k=Hn,k=1n1k+2=k=3n+21k=Hn+232k=1n1k+3=k=1n+41k=Hn+43213=Hn+4116Sn=12Hn+112(Hn+232)5(Hn+4116)=12Hn+112Hn+2334+5Hn+4556Sn=12(logn+γ+o(1n)+112(log(n+2)+γ+o(1n+2))5(log(n+4)+γ+o(1n+4))334+556Sn12lognγ2+112logn+112log(1+2n)+11γ25log(n)5log(1+4n)5γ334+556Sn112log(1+2n)5log(1+4n)334+556limnSn=556334

Answered by qaz last updated on 22/Jul/21

Σ_(n=1) ^∞ ((4n−3)/(n(n+2)(n+3)))  =Σ_(n=1) ^∞ (−(1/(2n))+((11)/2)∙(1/(n+2))−5∙(1/(n+3)))  =Σ_(n=0) ^∞ (−(1/2)∙(1/(n+1))+((11)/2)∙(1/(n+3))−5∙(1/(n+4)))  =Σ_(n=0) ^∞ (−(1/2)∫_0 ^1 x^n dx+((11)/2)∫_0 ^1 x^(n+2) dx−5∫_0 ^1 x^(n+3) dx)  =−(1/2)∫_0 ^1 (dx/(1−x))dx+((11)/2)∫_0 ^1 (x^2 /(1−x))dx−5∫_0 ^1 (x^3 /(1−x))dx  =(1/2)∫_0 ^1 ((−1+11x^2 −10x^3 )/(1−x))dx  =−(1/2)∫_0 ^1 (1+x−10x^2 )dx  =((11)/(12))

n=14n3n(n+2)(n+3)=n=1(12n+1121n+251n+3)=n=0(121n+1+1121n+351n+4)=n=0(1201xndx+11201xn+2dx501xn+3dx)=1201dx1xdx+11201x21xdx501x31xdx=12011+11x210x31xdx=1201(1+x10x2)dx=1112

Terms of Service

Privacy Policy

Contact: info@tinkutara.com