All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 147612 by ZiYangLee last updated on 22/Jul/21
Giventhatf(x)=(x3+1)21+x21+x.Byusinglogarithmaticdifferentiation,findthevalueoff′(1).
Answered by mathmax by abdo last updated on 22/Jul/21
anotherwaywehaveln(f(x))=2ln(x3+1)+12ln(1+x2)−ln(1+x)⇒⇒f′(x)f(x)=6x2x3+1+x1+x2−12x(1+x)⇒f′(1)f(1)=62+12−14=3+14=134⇒f′(1)=134f(1)⇒f′(1)=134×422=1322
f(x)=(x3+1)21+x21+x⇒f′(x)={6x2(x3+1)1+x2+x1+x2(x3+1)2}(1+x)−(12x)(x3+1)21+x2(1+x)2⇒f′(1)=(122+12×4)(2)−12(4)24=2(142)−224=2624=1322
Terms of Service
Privacy Policy
Contact: info@tinkutara.com