Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 147623 by mari last updated on 22/Jul/21

Commented by tabata last updated on 22/Jul/21

(2) it is clearley  that  f(z)=(1/(z−1))−(1/(z−2))    (a) ∣z∣<1    f(z)=−(1/(1−z))+(1/2).(1/((1−(z/2))))=−Σ_(n=0) ^∞ z^n +(1/2)Σ_(n=0) ^∞ ((z/2))^n =−Σ_(n=0) ^∞ z^n +Σ_(n=0) ^∞ (z^n /2^(2+1) )    (b)1<∣z∣<2    f(z)=(1/z).(1/((1−(1/z))))+(1/2).(1/((1−(z/2))))=(1/z)Σ_(n=0) ^∞ ((1/z))^n +(1/2)Σ_(n=0) ^∞ ((z/2))^n =Σ_(n=0) ^∞ (1/z^(n+1) )+Σ_(n=0) ^∞ (z^n /2^(n+1) )    (c)∣z∣>2    case 1:    f(z)=−(1/z).(1/((1−(2/z))))=−(1/z)Σ_(n=0) ^∞ ((2/z))^n =−Σ_(n=0) ^∞ (2^n /z^(n+1) )    case 2: ∣z∣<1     f(z)=−(1/(1−z))=−Σ_(n=0) ^∞ z^n      ∴f(z)=−Σ_(n=0) ^∞ z^n −Σ_(n=0) ^∞ (2^n /z^(n+1) )    ⟨MT⟩

(2)itisclearleythatf(z)=1z11z2(a)z∣<1f(z)=11z+12.1(1z2)=n=0zn+12n=0(z2)n=n=0zn+n=0zn22+1(b)1<∣z∣<2f(z)=1z.1(11z)+12.1(1z2)=1zn=0(1z)n+12n=0(z2)n=n=01zn+1+n=0zn2n+1(c)z∣>2case1:f(z)=1z.1(12z)=1zn=0(2z)n=n=02nzn+1case2:z∣<1f(z)=11z=n=0znf(z)=n=0znn=02nzn+1MT

Terms of Service

Privacy Policy

Contact: info@tinkutara.com