Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147673 by mnjuly1970 last updated on 22/Jul/21

Answered by Rasheed.Sindhi last updated on 22/Jul/21

(x)^(1/3) +((x−2))^(1/3) =((x−1))^(1/3)   ((x)^(1/3) +((x−2))^(1/3) )^3 =(((x−1))^(1/3) )^3   x+x−2+3(x)^(1/3) ((x−2))^(1/3) ((x)^(1/3) +((x−2))^(1/3) )=x−1  3(x)^(1/3) ((x−2))^(1/3) (((x−1))^(1/3) )=−x+1  27(x)(x−1)(x−2)=−(x−1)^3   27(x)(x−1)(x−2)+(x−1)^3 =0  (x−1){27(x)(x−2)+(x−1)^2 }=0  x=1 ∣ 27(x)(x−2)+(x−1)^2 =0  27x^2 −54x+x^2 −2x+1=0  28x^2 −56x+1=0  x=((56±(√(56^2 −4(28))))/(56))      =((56±12(√(21)))/(56))=((14±3(√(21)))/(14))  a=1,b=((14+3(√(21)))/(14)),c=((14−3(√(21)))/(14))  ((a/(a−2)))^(1/3) =((1/(1−2)))^(1/3) =−1  ((b/(b−2)))^(1/3) =((((14+3(√(21)))/(14))/(((14+3(√(21)))/(14))−2)))^(1/3) =(((14+3(√(21)))/(14+3(√(21))−28)))^(1/3)   =(((14+3(√(21)))/(−14+3(√(21)))))^(1/3) =(((14+3(√(21)))^(2/3) )/({196−9(21)}^(1/3) ))  =(((14+3(√(21)))^(2/3) )/({196−9(21)}^(1/3) ))=(((14+3(√(21)))^(2/3) )/7^(1/3) )  ((c/(c−2)))^(1/3) =(((14−3(√(21)))/(−14−3(√(21)))))^(1/3)   =(((14−3(√(21)))^(2/3) )/({196−9(21)}^(1/3) ))=(((14−3(√(21)))^(2/3) )/7^(1/3) )  ((a/(a−2)))^(1/3) +((b/(b−2)))^(1/3) +((c/(c−2)))^(1/3)   =−1+(((14+3(√(21)))^(2/3) )/7^(1/3) )+(((14−3(√(21)))^(2/3) )/7^(1/3) )  =−1+(((385+84(√(21)))^(1/3) )/7^(1/3) )+(((385−84(√(21)))^(1/3) )/7^(1/3) )

$$\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}=\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}} \\ $$$$\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}\right)^{\mathrm{3}} =\left(\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}}\right)^{\mathrm{3}} \\ $$$${x}+{x}−\mathrm{2}+\mathrm{3}\sqrt[{\mathrm{3}}]{{x}}\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}\right)={x}−\mathrm{1} \\ $$$$\mathrm{3}\sqrt[{\mathrm{3}}]{{x}}\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}\left(\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}}\right)=−{x}+\mathrm{1} \\ $$$$\mathrm{27}\left({x}\right)\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)=−\left({x}−\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\mathrm{27}\left({x}\right)\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)+\left({x}−\mathrm{1}\right)^{\mathrm{3}} =\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left\{\mathrm{27}\left({x}\right)\left({x}−\mathrm{2}\right)+\left({x}−\mathrm{1}\right)^{\mathrm{2}} \right\}=\mathrm{0} \\ $$$${x}=\mathrm{1}\:\mid\:\mathrm{27}\left({x}\right)\left({x}−\mathrm{2}\right)+\left({x}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{27}{x}^{\mathrm{2}} −\mathrm{54}{x}+{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{28}{x}^{\mathrm{2}} −\mathrm{56}{x}+\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{56}\pm\sqrt{\mathrm{56}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{28}\right)}}{\mathrm{56}} \\ $$$$\:\:\:\:=\frac{\mathrm{56}\pm\mathrm{12}\sqrt{\mathrm{21}}}{\mathrm{56}}=\frac{\mathrm{14}\pm\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}} \\ $$$${a}=\mathrm{1},{b}=\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}},{c}=\frac{\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}} \\ $$$$\sqrt[{\mathrm{3}}]{\frac{{a}}{{a}−\mathrm{2}}}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{1}−\mathrm{2}}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{\frac{{b}}{{b}−\mathrm{2}}}=\sqrt[{\mathrm{3}}]{\frac{\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}}}{\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}}−\mathrm{2}}}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}−\mathrm{28}}} \\ $$$$=\sqrt[{\mathrm{3}}]{\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{−\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}}=\frac{\left(\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}\right)^{\mathrm{2}/\mathrm{3}} }{\left\{\mathrm{196}−\mathrm{9}\left(\mathrm{21}\right)\right\}^{\mathrm{1}/\mathrm{3}} } \\ $$$$=\frac{\left(\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}\right)^{\mathrm{2}/\mathrm{3}} }{\left\{\mathrm{196}−\mathrm{9}\left(\mathrm{21}\right)\right\}^{\mathrm{1}/\mathrm{3}} }=\frac{\left(\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}\right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} } \\ $$$$\sqrt[{\mathrm{3}}]{\frac{{c}}{{c}−\mathrm{2}}}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}}{−\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}}} \\ $$$$=\frac{\left(\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}\right)^{\mathrm{2}/\mathrm{3}} }{\left\{\mathrm{196}−\mathrm{9}\left(\mathrm{21}\right)\right\}^{\mathrm{1}/\mathrm{3}} }=\frac{\left(\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}\right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} } \\ $$$$\sqrt[{\mathrm{3}}]{\frac{{a}}{{a}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{b}}{{b}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{c}−\mathrm{2}}} \\ $$$$=−\mathrm{1}+\frac{\left(\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}\right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} }+\frac{\left(\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}\right)^{\mathrm{2}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} } \\ $$$$=−\mathrm{1}+\frac{\left(\mathrm{385}+\mathrm{84}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} }+\frac{\left(\mathrm{385}−\mathrm{84}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} } \\ $$

Commented by mr W last updated on 22/Jul/21

=(((14+3(√(21)))/(−14+3(√(21)))))^(1/3) =(((14+3(√(21)))^(2/3) )/({−196+9(21)}^(1/3) ))  ....  =−1−(((385+84(√(21)))^(1/3) )/7^(1/3) )−(((385−84(√(21)))^(1/3) )/7^(1/3) )  =−6

$$=\sqrt[{\mathrm{3}}]{\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{−\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}}=\frac{\left(\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}\right)^{\mathrm{2}/\mathrm{3}} }{\left\{−\mathrm{196}+\mathrm{9}\left(\mathrm{21}\right)\right\}^{\mathrm{1}/\mathrm{3}} } \\ $$$$.... \\ $$$$=−\mathrm{1}−\frac{\left(\mathrm{385}+\mathrm{84}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} }−\frac{\left(\mathrm{385}−\mathrm{84}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} } \\ $$$$=−\mathrm{6} \\ $$

Commented by Rasheed.Sindhi last updated on 22/Jul/21

Sir how′s the middle line equal to −6?

$$\boldsymbol{\mathrm{Sir}}\:\mathrm{how}'\mathrm{s}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{line}\:\mathrm{equal}\:\mathrm{to}\:−\mathrm{6}? \\ $$

Commented by mr W last updated on 22/Jul/21

=−1−(((385+84(√(21)))^(1/3) )/7^(1/3) )−(((385−84(√(21)))^(1/3) )/7^(1/3) )  =−1−(55+12(√(21)))^(1/3) −(55−12(√(21)))^(1/3)   a=(55+12(√(21)))^(1/3)   b=(55−12(√(21)))^(1/3)   a^3 +b^3 =110  ab=1  (a+b)^3 =a^3 +b^3 +3ab(a+b)  (a+b)^3 =110+3(a+b)  (a+b)^3 −3(a+b)−110=0  u=a+b  (u−5)(u^2 +5u+22)=0  ⇒a+b=u=5  ⇒(55+12(√(21)))^(1/3) +(55−12(√(21)))^(1/3) =5

$$=−\mathrm{1}−\frac{\left(\mathrm{385}+\mathrm{84}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} }−\frac{\left(\mathrm{385}−\mathrm{84}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{7}^{\mathrm{1}/\mathrm{3}} } \\ $$$$=−\mathrm{1}−\left(\mathrm{55}+\mathrm{12}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} −\left(\mathrm{55}−\mathrm{12}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${a}=\left(\mathrm{55}+\mathrm{12}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${b}=\left(\mathrm{55}−\mathrm{12}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} =\mathrm{110} \\ $$$${ab}=\mathrm{1} \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +\mathrm{3}{ab}\left({a}+{b}\right) \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} =\mathrm{110}+\mathrm{3}\left({a}+{b}\right) \\ $$$$\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}\left({a}+{b}\right)−\mathrm{110}=\mathrm{0} \\ $$$${u}={a}+{b} \\ $$$$\left({u}−\mathrm{5}\right)\left({u}^{\mathrm{2}} +\mathrm{5}{u}+\mathrm{22}\right)=\mathrm{0} \\ $$$$\Rightarrow{a}+{b}={u}=\mathrm{5} \\ $$$$\Rightarrow\left(\mathrm{55}+\mathrm{12}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\mathrm{55}−\mathrm{12}\sqrt{\mathrm{21}}\right)^{\mathrm{1}/\mathrm{3}} =\mathrm{5} \\ $$

Commented by Rasheed.Sindhi last updated on 23/Jul/21

A bundle of thanks sir!

$$\mathrm{A}\:\mathrm{bundle}\:\mathrm{of}\:\mathrm{thanks}\:\mathrm{sir}! \\ $$

Commented by mnjuly1970 last updated on 23/Jul/21

grateful...

$${grateful}... \\ $$

Answered by mr W last updated on 22/Jul/21

((x/(x−2)))^(1/3) +1=(((x−1)/(x−2)))^(1/3)   ((x/(x−2)))^(1/3) +1=(((x−1)/x))^(1/3) ((x/(x−2)))^(1/3)   ((((x−1)/x))^(1/3) −1)((x/(x−2)))^(1/3) =1  let t=((x/(x−2)))^(1/3)   ⇒x=((2t^3 )/(t^3 −1))  ⇒x−1=((t^3 +1)/(t^3 −1))  ((((t^3 +1)/(2t^3 )))^(1/3) −1)t=1  (((t^3 +1)/2))^(1/3) =t+1  ⇒t^3 +1=2(t^3 +3t^2 +3t+1)  ⇒t^3 +6t^2 +6t+1=0  ⇒Σ_(i=1) ^3 t_i =−6  i.e. Σ_(i=1) ^3 ((x_i /(x_i −2)))^(1/3) =−6  i.e. ((a/(a−2)))^(1/3) +((b/(b−2)))^(1/3) +((c/(c−2)))^(1/3) =−6

$$\sqrt[{\mathrm{3}}]{\frac{{x}}{{x}−\mathrm{2}}}+\mathrm{1}=\sqrt[{\mathrm{3}}]{\frac{{x}−\mathrm{1}}{{x}−\mathrm{2}}} \\ $$$$\sqrt[{\mathrm{3}}]{\frac{{x}}{{x}−\mathrm{2}}}+\mathrm{1}=\sqrt[{\mathrm{3}}]{\frac{{x}−\mathrm{1}}{{x}}}\sqrt[{\mathrm{3}}]{\frac{{x}}{{x}−\mathrm{2}}} \\ $$$$\left(\sqrt[{\mathrm{3}}]{\frac{{x}−\mathrm{1}}{{x}}}−\mathrm{1}\right)\sqrt[{\mathrm{3}}]{\frac{{x}}{{x}−\mathrm{2}}}=\mathrm{1} \\ $$$${let}\:{t}=\sqrt[{\mathrm{3}}]{\frac{{x}}{{x}−\mathrm{2}}} \\ $$$$\Rightarrow{x}=\frac{\mathrm{2}{t}^{\mathrm{3}} }{{t}^{\mathrm{3}} −\mathrm{1}} \\ $$$$\Rightarrow{x}−\mathrm{1}=\frac{{t}^{\mathrm{3}} +\mathrm{1}}{{t}^{\mathrm{3}} −\mathrm{1}} \\ $$$$\left(\sqrt[{\mathrm{3}}]{\frac{{t}^{\mathrm{3}} +\mathrm{1}}{\mathrm{2}{t}^{\mathrm{3}} }}−\mathrm{1}\right){t}=\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{\frac{{t}^{\mathrm{3}} +\mathrm{1}}{\mathrm{2}}}={t}+\mathrm{1} \\ $$$$\Rightarrow{t}^{\mathrm{3}} +\mathrm{1}=\mathrm{2}\left({t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}+\mathrm{1}\right) \\ $$$$\Rightarrow{t}^{\mathrm{3}} +\mathrm{6}{t}^{\mathrm{2}} +\mathrm{6}{t}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}{t}_{{i}} =−\mathrm{6} \\ $$$${i}.{e}.\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{3}} {\sum}}\sqrt[{\mathrm{3}}]{\frac{{x}_{{i}} }{{x}_{{i}} −\mathrm{2}}}=−\mathrm{6} \\ $$$${i}.{e}.\:\sqrt[{\mathrm{3}}]{\frac{{a}}{{a}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{b}}{{b}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{c}−\mathrm{2}}}=−\mathrm{6} \\ $$

Commented by Rasheed.Sindhi last updated on 22/Jul/21

∨ ∩ ∣^(•)  ⊂∈  $ir !

$$\vee\:\cap\:\overset{\bullet} {\shortmid}\:\subset\in\:\:\$\mathrm{ir}\:! \\ $$

Commented by Tawa11 last updated on 23/Jul/21

Sir mrW please tag the general symmetry polynomial you did  sometimes ago.  like,     x + y + z = 1     x^2  + y^2  + z^2  = 2     x^3  + y^3  + z^3  = 3  then,    x^5   +  y^5   +  z^5   =  ??    Just  tag the one you did sometimes ago.  Thanks sir. God bless you.

$$\mathrm{Sir}\:\mathrm{mrW}\:\mathrm{please}\:\mathrm{tag}\:\mathrm{the}\:\mathrm{general}\:\mathrm{symmetry}\:\mathrm{polynomial}\:\mathrm{you}\:\mathrm{did} \\ $$$$\mathrm{sometimes}\:\mathrm{ago}. \\ $$$$\mathrm{like}, \\ $$$$\:\:\:\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{1} \\ $$$$\:\:\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{2} \\ $$$$\:\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:=\:\mathrm{3} \\ $$$$\mathrm{then},\:\:\:\:\mathrm{x}^{\mathrm{5}} \:\:+\:\:\mathrm{y}^{\mathrm{5}} \:\:+\:\:\mathrm{z}^{\mathrm{5}} \:\:=\:\:?? \\ $$$$ \\ $$$$\mathrm{Just}\:\:\mathrm{tag}\:\mathrm{the}\:\mathrm{one}\:\mathrm{you}\:\mathrm{did}\:\mathrm{sometimes}\:\mathrm{ago}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$

Commented by Tawa11 last updated on 23/Jul/21

Seen sir. Thanks.

$$\mathrm{Seen}\:\mathrm{sir}.\:\mathrm{Thanks}. \\ $$

Commented by mnjuly1970 last updated on 23/Jul/21

 thanks alot mr W

$$\:{thanks}\:{alot}\:{mr}\:{W} \\ $$

Answered by Rasheed.Sindhi last updated on 23/Jul/21

(x)^(1/3) +((x−2))^(1/3) =((x−1))^(1/3)   ((a/(a−2)))^(1/3) +((b/(b−2)))^(1/3) +((c/(c−2)))^(1/3) =?  Let x−1=y^3 ⇒x=y^3 +1  ((y^3 +1))^(1/3) +((y^3 −1))^(1/3) =y  Cubing both sides:  y^3 +1+y^3 −1+3(((y^3 +1)(y^3 −1))^(1/3) (y)=y^3   2y^3 +3y((y^6 −1))^(1/3) =y^3   y^3 +3y((y^6 −1))^(1/3) =0  y(y^2 +3((y^6 −1))^(1/3) )=0  y=0 ∣ y^2 +3((y^6 −1))^(1/3) =0  x−1=0 ∣ y^2 =−3((y^6 −1))^(1/3)    x=1 ∣  y^6 =−27(y^6 −1)            28y^6 =27⇒(y^3 )^2 =((27)/(28))            (x−1)^2 =((27)/(28))             28x^2 −56x+1=0     x=((56±(√(56^2 −4(28))))/(56))     x=((56±12(√(21)))/(56))=((14±3(√(21)))/(14))  a=1,b=((14+3(√(21)))/(14)),c=((14−3(√(21)))/(14))  A=((a/(a−2)))^(1/3) +((b/(b−2)))^(1/3) +((c/(c−2)))^(1/3)   A=((1/(1−2)))^(1/3) +((b/(b−2)))^(1/3) +((c/(c−2)))^(1/3)   A=−1+((b/(b−2)))^(1/3) +((c/(c−2)))^(1/3)   (A+1)^3 =(((b/(b−2)))^(1/3) +((c/(c−2)))^(1/3) )^3    =(b/(b−2))+(c/(c−2))+3(((bc)/(bc−2(b+c)+4)))^(1/3) (A+1)   =((bc−2b+bc−2c)/(bc−2(b+c)+4))+3(((bc)/(bc−2(b+c)+4)))^(1/3) (A+1)   =((2bc−2(b+c))/(bc−2(b+c)+4))+3(((bc)/(bc−2(b+c)+4)))^(1/3) (A+1)  bc=(((14+3(√(21)))/(14)))(((14−3(√(21)))/(14)))=((196−9(21))/(196))      =1/28  b+c=((14+3(√(21)))/(14))+((14−3(√(21)))/(14))=2  (A+1)^3 =((2(1/28)−2(2))/((1/28)−2(2)+4))+3(((1/28)/((1/28)−2(2)+4)))^(1/3) (A+1)  (A+1)^3 =(((1/(14))−4)/(1/(28)))+3(((1/28)/((1/28))))^(1/3) (A+1)  (A+1)^3 =(((−55)/(14))/(1/(28)))+3(((1/28)/((1/28))))^(1/3) (A+1)         =−110+3A+3  (A+1)^3 −3A+107=0  A^3 +1+3A(A+1)−3A+107=0o  A^3 +3A^2 +3A−3A+108=0  A^3 +3A^2 +108=0  (A+6)(A^2 −3A+18)=0  A=−6, ((3±(√(9−72)))/2)=((3±3i(√7))/2)(Rejected  because A is obviously real)

$$\sqrt[{\mathrm{3}}]{{x}}+\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}=\sqrt[{\mathrm{3}}]{{x}−\mathrm{1}} \\ $$$$\sqrt[{\mathrm{3}}]{\frac{{a}}{{a}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{b}}{{b}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{c}−\mathrm{2}}}=? \\ $$$${Let}\:{x}−\mathrm{1}={y}^{\mathrm{3}} \Rightarrow{x}={y}^{\mathrm{3}} +\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{{y}^{\mathrm{3}} +\mathrm{1}}+\sqrt[{\mathrm{3}}]{{y}^{\mathrm{3}} −\mathrm{1}}={y} \\ $$$${Cubing}\:{both}\:{sides}: \\ $$$${y}^{\mathrm{3}} +\mathrm{1}+{y}^{\mathrm{3}} −\mathrm{1}+\mathrm{3}\sqrt[{\mathrm{3}}]{\left({y}^{\mathrm{3}} +\mathrm{1}\right)\left({y}^{\mathrm{3}} −\mathrm{1}\right.}\left({y}\right)={y}^{\mathrm{3}} \\ $$$$\mathrm{2}{y}^{\mathrm{3}} +\mathrm{3}{y}\sqrt[{\mathrm{3}}]{{y}^{\mathrm{6}} −\mathrm{1}}={y}^{\mathrm{3}} \\ $$$${y}^{\mathrm{3}} +\mathrm{3}{y}\sqrt[{\mathrm{3}}]{{y}^{\mathrm{6}} −\mathrm{1}}=\mathrm{0} \\ $$$${y}\left({y}^{\mathrm{2}} +\mathrm{3}\sqrt[{\mathrm{3}}]{{y}^{\mathrm{6}} −\mathrm{1}}\right)=\mathrm{0} \\ $$$${y}=\mathrm{0}\:\mid\:{y}^{\mathrm{2}} +\mathrm{3}\sqrt[{\mathrm{3}}]{{y}^{\mathrm{6}} −\mathrm{1}}=\mathrm{0} \\ $$$${x}−\mathrm{1}=\mathrm{0}\:\mid\:{y}^{\mathrm{2}} =−\mathrm{3}\sqrt[{\mathrm{3}}]{{y}^{\mathrm{6}} −\mathrm{1}} \\ $$$$\:{x}=\mathrm{1}\:\mid\:\:{y}^{\mathrm{6}} =−\mathrm{27}\left({y}^{\mathrm{6}} −\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{28}{y}^{\mathrm{6}} =\mathrm{27}\Rightarrow\left({y}^{\mathrm{3}} \right)^{\mathrm{2}} =\frac{\mathrm{27}}{\mathrm{28}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} =\frac{\mathrm{27}}{\mathrm{28}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{28}{x}^{\mathrm{2}} −\mathrm{56}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:{x}=\frac{\mathrm{56}\pm\sqrt{\mathrm{56}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{28}\right)}}{\mathrm{56}} \\ $$$$\:\:\:{x}=\frac{\mathrm{56}\pm\mathrm{12}\sqrt{\mathrm{21}}}{\mathrm{56}}=\frac{\mathrm{14}\pm\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}} \\ $$$${a}=\mathrm{1},{b}=\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}},{c}=\frac{\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}} \\ $$$${A}=\sqrt[{\mathrm{3}}]{\frac{{a}}{{a}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{b}}{{b}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{c}−\mathrm{2}}} \\ $$$${A}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{\mathrm{1}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{b}}{{b}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{c}−\mathrm{2}}} \\ $$$${A}=−\mathrm{1}+\sqrt[{\mathrm{3}}]{\frac{{b}}{{b}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{c}−\mathrm{2}}} \\ $$$$\left({A}+\mathrm{1}\right)^{\mathrm{3}} =\left(\sqrt[{\mathrm{3}}]{\frac{{b}}{{b}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\frac{{c}}{{c}−\mathrm{2}}}\right)^{\mathrm{3}} \\ $$$$\:=\frac{{b}}{{b}−\mathrm{2}}+\frac{{c}}{{c}−\mathrm{2}}+\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{{bc}}{{bc}−\mathrm{2}\left({b}+{c}\right)+\mathrm{4}}}\left({A}+\mathrm{1}\right) \\ $$$$\:=\frac{{bc}−\mathrm{2}{b}+{bc}−\mathrm{2}{c}}{{bc}−\mathrm{2}\left({b}+{c}\right)+\mathrm{4}}+\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{{bc}}{{bc}−\mathrm{2}\left({b}+{c}\right)+\mathrm{4}}}\left({A}+\mathrm{1}\right) \\ $$$$\:=\frac{\mathrm{2}{bc}−\mathrm{2}\left({b}+{c}\right)}{{bc}−\mathrm{2}\left({b}+{c}\right)+\mathrm{4}}+\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{{bc}}{{bc}−\mathrm{2}\left({b}+{c}\right)+\mathrm{4}}}\left({A}+\mathrm{1}\right) \\ $$$${bc}=\left(\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}}\right)\left(\frac{\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}}\right)=\frac{\mathrm{196}−\mathrm{9}\left(\mathrm{21}\right)}{\mathrm{196}} \\ $$$$\:\:\:\:=\mathrm{1}/\mathrm{28} \\ $$$${b}+{c}=\frac{\mathrm{14}+\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}}+\frac{\mathrm{14}−\mathrm{3}\sqrt{\mathrm{21}}}{\mathrm{14}}=\mathrm{2} \\ $$$$\left({A}+\mathrm{1}\right)^{\mathrm{3}} =\frac{\mathrm{2}\left(\mathrm{1}/\mathrm{28}\right)−\mathrm{2}\left(\mathrm{2}\right)}{\left(\mathrm{1}/\mathrm{28}\right)−\mathrm{2}\left(\mathrm{2}\right)+\mathrm{4}}+\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}/\mathrm{28}}{\left(\mathrm{1}/\mathrm{28}\right)−\mathrm{2}\left(\mathrm{2}\right)+\mathrm{4}}}\left({A}+\mathrm{1}\right) \\ $$$$\left({A}+\mathrm{1}\right)^{\mathrm{3}} =\frac{\frac{\mathrm{1}}{\mathrm{14}}−\mathrm{4}}{\frac{\mathrm{1}}{\mathrm{28}}}+\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}/\mathrm{28}}{\left(\mathrm{1}/\mathrm{28}\right)}}\left({A}+\mathrm{1}\right) \\ $$$$\left({A}+\mathrm{1}\right)^{\mathrm{3}} =\frac{\frac{−\mathrm{55}}{\mathrm{14}}}{\frac{\mathrm{1}}{\mathrm{28}}}+\mathrm{3}\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}/\mathrm{28}}{\left(\mathrm{1}/\mathrm{28}\right)}}\left({A}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:=−\mathrm{110}+\mathrm{3}{A}+\mathrm{3} \\ $$$$\left({A}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{3}{A}+\mathrm{107}=\mathrm{0} \\ $$$${A}^{\mathrm{3}} +\mathrm{1}+\mathrm{3}{A}\left({A}+\mathrm{1}\right)−\mathrm{3}{A}+\mathrm{107}=\mathrm{0}{o} \\ $$$${A}^{\mathrm{3}} +\mathrm{3}{A}^{\mathrm{2}} +\mathrm{3}{A}−\mathrm{3}{A}+\mathrm{108}=\mathrm{0} \\ $$$${A}^{\mathrm{3}} +\mathrm{3}{A}^{\mathrm{2}} +\mathrm{108}=\mathrm{0} \\ $$$$\left({A}+\mathrm{6}\right)\left({A}^{\mathrm{2}} −\mathrm{3}{A}+\mathrm{18}\right)=\mathrm{0} \\ $$$${A}=−\mathrm{6},\:\frac{\mathrm{3}\pm\sqrt{\mathrm{9}−\mathrm{72}}}{\mathrm{2}}=\frac{\mathrm{3}\pm\mathrm{3}{i}\sqrt{\mathrm{7}}}{\mathrm{2}}\left({Rejected}\right. \\ $$$$\left.{because}\:{A}\:{is}\:{obviously}\:{real}\right) \\ $$

Commented by mr W last updated on 23/Jul/21

good too!

$${good}\:{too}! \\ $$

Commented by Rasheed.Sindhi last updated on 23/Jul/21

An alternate  although  some what more time consuming  yet  not bad for practising.

$$\mathcal{A}{n}\:{alternate} \\ $$$${although} \\ $$$${some}\:{what}\:{more}\:{time}\:{consuming} \\ $$$${yet} \\ $$$${not}\:{bad}\:{for}\:{practising}. \\ $$

Commented by Rasheed.Sindhi last updated on 23/Jul/21

Thank You  sir mr W!

$$\mathcal{T}{hank}\:\mathcal{Y}{ou} \\ $$$$\boldsymbol{{sir}}\:{mr}\:{W}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com