Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 147688 by mathmax by abdo last updated on 22/Jul/21

find lim_(n→+∞) ∫_(1/n) ^(√n)    xe^(−x^2 ) arctan(nx)dx

$$\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \int_{\frac{\mathrm{1}}{\mathrm{n}}} ^{\sqrt{\mathrm{n}}} \:\:\:\mathrm{xe}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{arctan}\left(\mathrm{nx}\right)\mathrm{dx} \\ $$

Answered by ArielVyny last updated on 24/Jul/21

according that lim ∫f(x)dx=∫limf(x)dx  we have lim_(n→+∞) ∫_(1/n) ^(√n) xe^(−x^2 ) arctan(nx)dx  =(π/2)∫_0 ^(+∞) xe^(−x^2 ) dx  x^2 =t→2xdx=dt  ∫_0 ^(+∞) e^(−t) (1/2)dt=(1/2)[−e^(−t) ]_0 ^(+∞) =(1/2)[0+1]=(1/2)  lim_(n→+∞) ∫_(1/n) ^(√n) xe^(−x^2 ) arctg(nx)dx=(π/4)

$${according}\:{that}\:{lim}\:\int{f}\left({x}\right){dx}=\int{limf}\left({x}\right){dx} \\ $$$${we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \int_{\frac{\mathrm{1}}{{n}}} ^{\sqrt{{n}}} {xe}^{−{x}^{\mathrm{2}} } {arctan}\left({nx}\right){dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{+\infty} {xe}^{−{x}^{\mathrm{2}} } {dx} \\ $$$${x}^{\mathrm{2}} ={t}\rightarrow\mathrm{2}{xdx}={dt} \\ $$$$\int_{\mathrm{0}} ^{+\infty} {e}^{−{t}} \frac{\mathrm{1}}{\mathrm{2}}{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left[−{e}^{−{t}} \right]_{\mathrm{0}} ^{+\infty} =\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{0}+\mathrm{1}\right]=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${lim}_{{n}\rightarrow+\infty} \int_{\frac{\mathrm{1}}{{n}}} ^{\sqrt{{n}}} {xe}^{−{x}^{\mathrm{2}} } {arctg}\left({nx}\right){dx}=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com