All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 147711 by lapache last updated on 22/Jul/21
Determinerl′originaldelaplaceF(x)=1(x2+x+1)2
Answered by Olaf_Thorendsen last updated on 23/Jul/21
G(x)=F(x−12)=1(x2+34)2H(x)=G(32x)=169.1(x2+1)2H(x)=169[−14(x+i)2−14(x−i)2+i4(x+i)−i4(x−i)]H(x)=49[−1(x+i)2−1(x−i)2+ix+i−ix−i]L−1(1x−a)=eatetL−1(1(x−a)2)=teatL−1{H}(t)=49[−te−it−teit+ie−it−ieit]L−1{H}(t)=49[−2tcost+2sint]L−1{H}(t)=89(sint−tcost)L−1{G(x)}(t)=L−1{H(x32)}(t)L−1{G(x)}(t)=32(132L−1{H(x32)}(t))L−1{G(x)}(t)=32(L−1{H}(32t))L−1{G}(t)=433(sin(32t)−32tcos(32t))L−1{F(x)}(t)=L−1{G(x+12)}(t)L−1{F(x)}(t)=e−12tL−1{G(x)}(t)L−1{F}(t)=433e−t2(sin(32t)−32tcos(32t))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com