Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 147711 by lapache last updated on 22/Jul/21

Determiner l′original de laplace  F(x)=(1/((x^2 +x+1)^2 ))

DeterminerloriginaldelaplaceF(x)=1(x2+x+1)2

Answered by Olaf_Thorendsen last updated on 23/Jul/21

G(x) = F(x−(1/2)) = (1/((x^2 +(3/4))^2 ))  H(x) = G(((√3)/2)x) = ((16)/9).(1/((x^2 +1)^2 ))  H(x) = ((16)/9)[−(1/(4(x+i)^2 ))−(1/(4(x−i)^2 ))+(i/(4(x+i)))−(i/(4(x−i)))]  H(x) = (4/9)[−(1/((x+i)^2 ))−(1/((x−i)^2 ))+(i/(x+i))−(i/(x−i))]  L^(−1) ((1/(x−a))) = e^(at)  et L^(−1) ((1/((x−a)^2 ))) = te^(at)   L^(−1) {H}(t) = (4/9)[−te^(−it) −te^(it) +ie^(−it) −ie^(it) ]  L^(−1) {H}(t) = (4/9)[−2tcost+2sint]  L^(−1) {H}(t) = (8/9)(sint−tcost)  L^(−1) {G(x)}(t) = L^(−1) {H((x/((√3)/2)))}(t)   L^(−1) {G(x)}(t) = ((√3)/2)((1/((√3)/2))L^(−1) {H((x/((√3)/2)))}(t) )  L^(−1) {G(x)}(t) = ((√3)/2)(L^(−1) {H}(((√3)/2)t))  L^(−1) {G}(t) = (4/(3(√3)))(sin(((√3)/2)t)−((√3)/2)tcos(((√3)/2)t))  L^(−1) {F(x)}(t) = L^(−1) {G(x+(1/2))}(t)  L^(−1) {F(x)}(t) = e^(−(1/2)t) L^(−1) {G(x)}(t)    L^(−1) {F}(t) = (4/(3(√3)))e^(−(t/2)) (sin(((√3)/2)t)−((√3)/2)tcos(((√3)/2)t))

G(x)=F(x12)=1(x2+34)2H(x)=G(32x)=169.1(x2+1)2H(x)=169[14(x+i)214(xi)2+i4(x+i)i4(xi)]H(x)=49[1(x+i)21(xi)2+ix+iixi]L1(1xa)=eatetL1(1(xa)2)=teatL1{H}(t)=49[teitteit+ieitieit]L1{H}(t)=49[2tcost+2sint]L1{H}(t)=89(sinttcost)L1{G(x)}(t)=L1{H(x32)}(t)L1{G(x)}(t)=32(132L1{H(x32)}(t))L1{G(x)}(t)=32(L1{H}(32t))L1{G}(t)=433(sin(32t)32tcos(32t))L1{F(x)}(t)=L1{G(x+12)}(t)L1{F(x)}(t)=e12tL1{G(x)}(t)L1{F}(t)=433et2(sin(32t)32tcos(32t))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com