All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 147714 by puissant last updated on 22/Jul/21
Resoudre loga(x2)>loga2(3x−2) aveca∈R+∖{1} NB:aeta2sontlesbasesdeslogarithmes desnombresdel′inegalite´.. lesresultatssedonneronssouaforme d′inegalite´selonlescas..
Answered by Olaf_Thorendsen last updated on 22/Jul/21
loga(x2)>loga2(3x−2),a∈R+∗∖{1} ⇔ln(x2)lna>ln(3x−2)lna2=ln(3x−2)2lna(1) ∙1ercas:0<a<1,lna<0 (1):ln(x2)<12ln(3x−2) ⇔2ln(x2)<ln(3x−2) ⇔ln(x4)<ln(3x−2) ⇔x4<3x−2 ⇔x4−3x+2<0 ⇔(x−1)(x3+x2+x−2)<0(2) Onanecessairement3x−2>0 ⇒x>23etl′etudedutrinome x3+x2+x−2montrequ′iladmetune racinereelleuniqueα(≈0,811) −Six∈]23;α]: x−1<0etx3+x2+x−2⩽0 (2)estimpossible. −Six∈]α;1[: x−1<0etx3+x2+x−2>0 (2)estverifiee. −Six∈[1;+∞[: x−1⩾0etx3+x2+x−2>0 (2)estimpossible. Finalement,S=]α;1[sia∈]0;1[ ∙2emecas:a>1,lna>0 L′inegalitedevient: (x−1)(x3+x2+x−2)>0(3) etS=]23;α[∪]1;+∞[sia∈]1;+∞[
Commented bypuissant last updated on 22/Jul/21
merciprof
Terms of Service
Privacy Policy
Contact: info@tinkutara.com