All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 147738 by liberty last updated on 23/Jul/21
limx→0arctanx−arcsinxsin3x=?
Answered by gsk2684 last updated on 23/Jul/21
limx→0tan−1x−sin−1xsin3x≈limx→0tan−1x−sin−1xx3→00,applyL′Hopitalrule=limx→0ddx{tan−1x−sin−1x}ddxx3=limx→011+x2−11−x23x2=limx→01−x2−(1+x2)(1+x2)1−x23x2=13(1+02)1−02limx→0(1−x2)2−(1+x2)2x2{1−x2+1+x2}=131{1−02+1+02}limx→0(1−x2)−(1+2x2+x4)x2=16limx→0−3x2−x4x2=16limx→0(−3−x2)=16(−3)=−12ORlimx→0tan−1x−sin−1xsin3x=limx→0(x−x33+x55−...)−(x+x33!+32x55!+...)x3=limx→0(−13−16)x3+...x3=−12
Answered by mathmax by abdo last updated on 23/Jul/21
arctan′x=11+x2∼1−x2⇒arctanx∼x−x33(arcsin′x=11−x2=(1−x2)−12∼1+x22⇒arcsinx∼x+x36andsinx∼x⇒arctanx−arcsinxsin3x∼x−x33−x−x36x3∼−3x36x3=−12⇒limx→0arctanx−arcsinxsin3x=−12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com