Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 147738 by liberty last updated on 23/Jul/21

 lim_(x→0)  ((arctan x−arcsin x)/(sin^3 x)) =?

limx0arctanxarcsinxsin3x=?

Answered by gsk2684 last updated on 23/Jul/21

lim_(x→0) ((tan^(−1) x−sin^(−1) x)/(sin^3 x))  ≈lim_(x→0) ((tan^(−1) x−sin^(−1) x)/x^3 )→(0/0), apply L′Hopital rule  =lim_(x→0) (((d/dx){tan^(−1) x−sin^(−1) x})/((d/dx)x^3 ))  =lim_(x→0) (((1/(1+x^2 ))−(1/( (√(1−x^2 )))))/(3x^2 ))  =lim_(x→0) (((√(1−x^2 ))−(1+x^2 ))/((1+x^2 ) (√(1−x^2  )) 3x^2 ))  =(1/(3(1+0^2 )(√(1−0^2 ))))lim_(x→0) ((((√(1−x^2 )))^2 −(1+x^2 )^2 )/(x^2 {(√(1−x^2 ))+1+x^2 }))  =(1/3)(1/({(√(1−0^2 ))+1+0^2 }))lim_(x→0) (((1−x^2 )−(1+2x^2 +x^4 ))/x^2 )  =(1/6)lim_(x→0) ((−3x^2 −x^4 )/x^2 )  =(1/6)lim_(x→0) (−3−x^2 )  =(1/6)(−3)=−(1/2)  OR  lim_(x→0) ((tan^(−1) x−sin^(−1) x)/(sin^3 x))  =lim_(x→0) (((x−(x^3 /3)+(x^5 /5)−...)−(x+(x^3 /(3!))+((3^2 x^5 )/(5!))+...))/x^3 )  =lim_(x→0) (((−(1/3)−(1/6))x^3 +...)/x^3 )=−(1/2)

limx0tan1xsin1xsin3xlimx0tan1xsin1xx300,applyLHopitalrule=limx0ddx{tan1xsin1x}ddxx3=limx011+x211x23x2=limx01x2(1+x2)(1+x2)1x23x2=13(1+02)102limx0(1x2)2(1+x2)2x2{1x2+1+x2}=131{102+1+02}limx0(1x2)(1+2x2+x4)x2=16limx03x2x4x2=16limx0(3x2)=16(3)=12ORlimx0tan1xsin1xsin3x=limx0(xx33+x55...)(x+x33!+32x55!+...)x3=limx0(1316)x3+...x3=12

Answered by mathmax by abdo last updated on 23/Jul/21

arctan^′ x=(1/(1+x^2 ))∼1−x^2  ⇒arctanx∼x−(x^3 /3)  (arcsin^′ x=(1/( (√(1−x^2 ))))=((√(1−x^2 )))^(−(1/2)) ∼1+(x^2 /2) ⇒arcsinx∼x+(x^3 /6) and sinx∼x⇒  ((arctanx−arcsinx)/(sin^3 x))∼((x−(x^3 /3)−x−(x^3 /6))/x^3 )∼((−3x^3 )/(6x^3 ))=−(1/2) ⇒  lim_(x→0)  ((arctanx−arcsinx)/(sin^3 x))=−(1/2)

arctanx=11+x21x2arctanxxx33(arcsinx=11x2=(1x2)121+x22arcsinxx+x36andsinxxarctanxarcsinxsin3xxx33xx36x33x36x3=12limx0arctanxarcsinxsin3x=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com