All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 147748 by Odhiambojr last updated on 23/Jul/21
provethatcurvesx2−y2=3andxy=2intersectattherightangle
Commented by Olaf_Thorendsen last updated on 23/Jul/21
x2−y2=3andy=2x⇒x2−4x2=3x4−3x2−4=0x4+x2−4x2−4=0x2(x2+1)−4(x2+1)=0(x2−4)(x2+1)=0(x+2)(x−2)(x2+1)=0x=−2⇒y=2−2=−1x=+2⇒y=2+2=+1⇒2intersectionpoints:A(−2,−1)andB(+2,+1)∙pointsAandBify=2x,dydx=−2x2⇒dydx∣x=±2=−12∙pointAIfx2−y2=3,y=−x2−3dydx=−2x2x2−3=−xx2−3dydx∣x=−2=−−24−3=+2∙pointBIfx2−y2=3,y=+x2−3dydx=2x2x2−3=xx2−3dydx∣x=−2=+24−3=+2TheproductoftheslopesatAandBisequalto−1,(−12×2),thatmeansthetwocurvesinterceptatarightangle.
Answered by iloveisrael last updated on 23/Jul/21
(1)x2−y2=3⇒2x−2y.y′=0⇒m1=y′=xy(2)xy=2⇒y+xy′=0⇒m2=y′=−yx∴m1×m2=−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com