Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147791 by Tawa11 last updated on 23/Jul/21

If       a  +  b  +  c  +  d   =   1            a^2   +  b^2   +  c^2   +  d^2   =  2            a^3   +  b^3   +  c^3   +  d^3   =  3            a^4   +  b^4   +  c^4   +  d^4   =  4  Evaluate:               a^6   +  b^6   +  c^6   +  d^6

Ifa+b+c+d=1a2+b2+c2+d2=2a3+b3+c3+d3=3a4+b4+c4+d4=4Evaluate:a6+b6+c6+d6

Commented by prakash jain last updated on 25/Jul/21

g(k)=(1/(1−ka))=1+ka+k^2 a^2 +..  f(k)=(1/(1−ka))+(1/(1−kb))+(1/(1−kc))+(1/(1−kd))  f(k)=((4+A_1 k+A_2 k^2 +A_3 k^3 )/(1+B_1 k+B_2 k^2 +B_3 k^3 +B_4 k^2 ))  A_1 =−3(a+b+c+d)  B_1 =−(a+b+c+d)⇒A_1 =3B_1   A_2 =2(ab+bc+ad+bc+bd+cd)=2B_2   A_3 =−(abc+abd+acd+bcd)=B_3   f(k)=4+k(a+b+c+d)+k^2 (a^2 +b^2 +c^2 +d^2 )..  Let us denote a^n +b^n +c^n +d^n =u_n   f(k)=4+ku_1 +k^2 u_2 +k^3 u_3 +k^4 u_4 +...  4+A_1 k+A_2 k^2 +A_3 k^3 =     (1+B_1 k+B_2 k^2 +B_3 k^3 )(4+ku_1 +k^2 u_2 +k^3 u_3 +k^4 u_4 +k^5 u_5 +k^6 u6+...)  Given u_1 =1, u_2 =2, u_3 =3, u_4 =4  Comparing coefficients  A_1 =u_1 +4B_1 ⇒3B_1 =1+4B_1          ⇒B_1 =−1,A_1 =−3  A_2 =u_2 +u_1 B_1 +4B_2 =2−1+4B_2         ⇒2B_2 =1+4B_2 ⇒B_2 =((−1)/2),A_2 =−1  A_3 =u_3 +B_1 u_2 +B_2 u_1 +4B_3         ⇒B_3 =3−2−(1/2)+4B_3 ⇒B_3 =A_3 =−(1/6)  0=u_4 +B_1 u_3 +B_2 u_2 +B_3 u_1 +4B_4   ⇒0=4−3−(1/2)×2−(1/6)+4B_4 ⇒B_4 =(1/(24))  0=u_5 +B_1 u_4 +B_2 u_3 +B_3 u_2 +B_4 u_1       u_1 ..u_4 ,B_1 ...B_4  are known u_5  can be      calculated  similary  0=u_6 +B_1 u_5 +B_2 u_4 +B_3 u_3 +B_4 u_2        u_1 ...u_5  are known and you can       calculate u_6 =a^6 +b^6 +c^6 +d^6

g(k)=11ka=1+ka+k2a2+..f(k)=11ka+11kb+11kc+11kdf(k)=4+A1k+A2k2+A3k31+B1k+B2k2+B3k3+B4k2A1=3(a+b+c+d)B1=(a+b+c+d)A1=3B1A2=2(ab+bc+ad+bc+bd+cd)=2B2A3=(abc+abd+acd+bcd)=B3f(k)=4+k(a+b+c+d)+k2(a2+b2+c2+d2)..Letusdenotean+bn+cn+dn=unf(k)=4+ku1+k2u2+k3u3+k4u4+...4+A1k+A2k2+A3k3=(1+B1k+B2k2+B3k3)(4+ku1+k2u2+k3u3+k4u4+k5u5+k6u6+...)Givenu1=1,u2=2,u3=3,u4=4ComparingcoefficientsA1=u1+4B13B1=1+4B1B1=1,A1=3A2=u2+u1B1+4B2=21+4B22B2=1+4B2B2=12,A2=1A3=u3+B1u2+B2u1+4B3B3=3212+4B3B3=A3=160=u4+B1u3+B2u2+B3u1+4B40=4312×216+4B4B4=1240=u5+B1u4+B2u3+B3u2+B4u1u1..u4,B1...B4areknownu5canbecalculatedsimilary0=u6+B1u5+B2u4+B3u3+B4u2u1...u5areknownandyoucancalculateu6=a6+b6+c6+d6

Commented by prakash jain last updated on 25/Jul/21

u_5 −4−(3/2)−(1/3)+(1/(24))=0  u_5 =((96+36+8−1)/(24))=((139)/(24))  u_6 −((139)/(24))−(1/2)×4−(1/6)×3+(1/(24))×2  u_6 =((139)/(24))+2+(1/2)−(1/(12))=((139+48+12−2)/(24))  =((197)/(24))  a^6 +b^6 +c^6 +d^6 =((197)/(24))    I haven′t checked numerical calculation  thoroughly so please recheck these.  You can use this method to find  any u_n =a^n +b^n +c^n +d^n

u543213+124=0u5=96+36+8124=13924u61392412×416×3+124×2u6=13924+2+12112=139+48+12224=19724a6+b6+c6+d6=19724Ihaventcheckednumericalcalculationthoroughlysopleaserecheckthese.Youcanusethismethodtofindanyun=an+bn+cn+dn

Commented by Tawa11 last updated on 25/Jul/21

Thanks sir. I appreciate. God bless you.

Thankssir.Iappreciate.Godblessyou.

Answered by Rasheed.Sindhi last updated on 23/Jul/21

Let b=pa,c=qa,d=ra  (i)⇒a(1+p+q+r)=1       ⇒p+q+r=1/a−1=(1−a)/a...A  (ii)⇒a^2 (1+p^2 +q^2 +r^2 )=2     ⇒p^2 +q^2 +r^2 =2/a^2 −1=(2−a^2 )/a^2 ...B  (iii)⇒p^3 +q^3 +r^3 =(3−a^3 )/a^3 ...C  (iv)⇒p^4 +q^4 +r^4 =(4−a^4 )/a^4 ...D  A⇒(p+q+r)^2 ={(1−a)/a}^2     p^2 +q^2 +r^2 +2(pq+qr+rp)=(((1−a)/a))^2     ((2−a^2 )/a^2 )+2(pq+qr+rp)=(((1−a)/a))^2    2(pq+qr+rp)=(((1−a)/a))^2 −((2−a^2 )/a^2 )   pq+qr+rp=(((1−a)^2 −2+a^2 )/(2a^2 ))  C⇒p^3 +q^3 +r^3 =((3−a^3 )/a^3 )      p^3 +q^3 +r^3 −3pqr=((3−a^3 )/a^3 )−3pqr  (p+q+r)(p^2 +q^2 +r^2 −(pq+qr+rp) )                                             =((3−a^3 )/a^3 )−3pqr  3pqr=((3−a^3 )/a^3 )−(((1−a)/a))(((2−a^2 )/a^2 )−(((1−a)^2 −2+a^2 )/(2a^2 )))  pqr=((3−a^3 )/(3a^3 ))−(((1−a)/(3a)))(((2−a^2 )/a^2 )−(((1−a)^2 −2+a^2 )/(2a^2 )))

Letb=pa,c=qa,d=ra(i)a(1+p+q+r)=1p+q+r=1/a1=(1a)/a...A(ii)a2(1+p2+q2+r2)=2p2+q2+r2=2/a21=(2a2)/a2...B(iii)p3+q3+r3=(3a3)/a3...C(iv)p4+q4+r4=(4a4)/a4...DA(p+q+r)2={(1a)/a}2p2+q2+r2+2(pq+qr+rp)=(1aa)22a2a2+2(pq+qr+rp)=(1aa)22(pq+qr+rp)=(1aa)22a2a2pq+qr+rp=(1a)22+a22a2Cp3+q3+r3=3a3a3p3+q3+r33pqr=3a3a33pqr(p+q+r)(p2+q2+r2(pq+qr+rp))=3a3a33pqr3pqr=3a3a3(1aa)(2a2a2(1a)22+a22a2)pqr=3a33a3(1a3a)(2a2a2(1a)22+a22a2)

Commented by Tawa11 last updated on 23/Jul/21

Thanks sir. God bless you.

Thankssir.Godblessyou.

Answered by mr W last updated on 23/Jul/21

p_k =a^k +b^k +c^k +d^k   e_1 =p_1 =1  2e_2 =e_1 p_1 −p_2 =1−2=−1 ⇒e_2 =−(1/2)  3e_3 =e_2 p_1 −e_1 p_2 +p_3 =−(1/2)−2+3=(1/2) ⇒e_3 =(1/6)  4e_4 =e_3 p_1 −e_2 p_2 +e_1 p_3 −p_4 =(1/6)+1+3−4=(1/6) ⇒e_4 =(1/(24))  0=e_4 p_1 −e_3 p_2 +e_2 p_3 −e_1 p_4 +p_5    ⇒p_5 =−(1/(24))+(1/3)+(3/2)+4=((139)/(24))  0=−e_4 p_2 +e_3 p_3 −e_2 p_4 +e_1 p_5 −p_6    ⇒p_6 =−(1/(12))+(1/2)+2+((139)/(24))=((197)/(24))    generally  p_n =p_(n−1) +(p_(n−2) /2)+(p_(n−3) /6)−(p_(n−4) /(24))  or  p_n =a^n +b^n +c^n +d^n   a,b,c,d are roots of equation  x^4 −x^3 −(1/2)x^2 −(1/6)x+(1/(24))=0

pk=ak+bk+ck+dke1=p1=12e2=e1p1p2=12=1e2=123e3=e2p1e1p2+p3=122+3=12e3=164e4=e3p1e2p2+e1p3p4=16+1+34=16e4=1240=e4p1e3p2+e2p3e1p4+p5p5=124+13+32+4=139240=e4p2+e3p3e2p4+e1p5p6p6=112+12+2+13924=19724generallypn=pn1+pn22+pn36pn424orpn=an+bn+cn+dna,b,c,darerootsofequationx4x312x216x+124=0

Commented by Tawa11 last updated on 23/Jul/21

Thanks sir. God bless you.

Thankssir.Godblessyou.

Commented by mr W last updated on 23/Jul/21

https://en.m.wikipedia.org/wiki/Newton%27s_identities

Commented by Rasheed.Sindhi last updated on 23/Jul/21

Wonderful method sir!  But I′m feeling  difficulity in  understanding.

Wonderfulmethodsir!ButImfeelingdifficulityinunderstanding.

Commented by mr W last updated on 23/Jul/21

see also Q74970

seealsoQ74970

Commented by Tawa11 last updated on 23/Jul/21

Sir, which sequence you use to get the  P_n . Just the sequence.

Sir,whichsequenceyouusetogetthePn.Justthesequence.

Commented by Tawa11 last updated on 23/Jul/21

Or there is a format to get the  P_n

OrthereisaformattogetthePn

Commented by Tawa11 last updated on 24/Jul/21

I grab now, you used   e_1   −  e_2   +  e_3   −  e_4

Igrabnow,youusede1e2+e3e4

Commented by peter frank last updated on 24/Jul/21

 thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com