Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 147795 by ajfour last updated on 23/Jul/21

Commented by ajfour last updated on 23/Jul/21

Find b/a.

Findb/a.

Commented by mr W last updated on 24/Jul/21

very nice question!  i have tried to find an answer. but  it′s not so easy to me.

verynicequestion!ihavetriedtofindananswer.butitsnotsoeasytome.

Answered by mr W last updated on 23/Jul/21

Commented by mr W last updated on 24/Jul/21

y_A =b−s  x_C =(a+s)cos θ  y_C =(a+s)sin θ  ω=(dθ/dt)  u=(ds/dt)  u_A =−(dy_A /dt)=u  a_A =(du_A /dt)=(du/dt)  T−mg=ma_A   ⇒T=m(a_A +g)  u_(Cx) =−(dx_C /dt)=(a+s)ωsin θ−ucos θ  a_(Cx) =uωsin θ+(a+s)αsin θ+(a+s)ω^2 cos θ−a_A cos θ+uωsin θ  u_(Cy) =(dy_C /dt)=(a+s)ωcos θ+usin θ  a_(Cy) =uωcos θ+(a+s)αcos θ−(a+s)ω^2 sin θ+a_A sin θ+uωcos θ  (1/2)m[u^2 +(a+s)^2 ω^2 sin^2  θ+u^2 cos^2  θ−2(a+s)ωusin θcos θ+(a+s)^2 ω^2 cos^2  θ+u^2 sin^2  θ+2(a+s)ωucos θsin θ]=mg[(a+s)sin θ−s]  ⇒2u^2 +(a+s)^2 ω^2 =2g[(a+s)sin θ−s]   ...(i)  Tcos θ=ma_(Cx)   (a_A +g)cos θ=uωsin θ+(a+s)αsin θ+(a+s)ω^2 cos θ−a_A cos θ+uωsin θ  ⇒2a_A +g=2uωtan θ+(a+s)αtan θ+(a+s)ω^2   mg−Tsin θ=ma_(Cy)   ⇒2a_A +g=(1/(tan θ))[g−2uω−(a+s)α]+(a+s)ω^2   2uωtan θ+(a+s)αtan θ+(a+s)ω^2 =(1/(tan θ))[g−2uω−(a+s)α]+(a+s)ω^2   [2uω+(a+s)α](1+tan^2  θ)=g  ⇒2uω+(a+s)α=gcos^2  θ   ...(ii)  α=(dω/dt)=ω(dω/dθ)  from (i):  u=(√(g[(a+s)sin θ−s]−(1/2)(a+s)^2 ω^2 ))  ⇒(ds/dθ)=(1/ω)(√(g[(a+s)sin θ−s]−(1/2)(a+s)^2 ω^2 ))  from (ii):  ⇒(dω/dθ)=((gcos^2  θ)/(ω(a+s)))−(2/(a+s))(√(g[(a+s)sin θ−s]−(1/2)(a+s)^2 ω^2 ))  ......  s(θ)∣_(θ=0) =0  ω(θ)∣_(θ=0) =0  s(θ)∣_(θ=(π/2)) =((b−a)/2)

yA=bsxC=(a+s)cosθyC=(a+s)sinθω=dθdtu=dsdtuA=dyAdt=uaA=duAdt=dudtTmg=maAT=m(aA+g)uCx=dxCdt=(a+s)ωsinθucosθaCx=uωsinθ+(a+s)αsinθ+(a+s)ω2cosθaAcosθ+uωsinθuCy=dyCdt=(a+s)ωcosθ+usinθaCy=uωcosθ+(a+s)αcosθ(a+s)ω2sinθ+aAsinθ+uωcosθ12m[u2+(a+s)2ω2sin2θ+u2cos2θ2(a+s)ωusinθcosθ+(a+s)2ω2cos2θ+u2sin2θ+2(a+s)ωucosθsinθ]=mg[(a+s)sinθs]2u2+(a+s)2ω2=2g[(a+s)sinθs]...(i)Tcosθ=maCx(aA+g)cosθ=uωsinθ+(a+s)αsinθ+(a+s)ω2cosθaAcosθ+uωsinθ2aA+g=2uωtanθ+(a+s)αtanθ+(a+s)ω2mgTsinθ=maCy2aA+g=1tanθ[g2uω(a+s)α]+(a+s)ω22uωtanθ+(a+s)αtanθ+(a+s)ω2=1tanθ[g2uω(a+s)α]+(a+s)ω2[2uω+(a+s)α](1+tan2θ)=g2uω+(a+s)α=gcos2θ...(ii)α=dωdt=ωdωdθfrom(i):u=g[(a+s)sinθs]12(a+s)2ω2dsdθ=1ωg[(a+s)sinθs]12(a+s)2ω2from(ii):dωdθ=gcos2θω(a+s)2a+sg[(a+s)sinθs]12(a+s)2ω2......s(θ)θ=0=0ω(θ)θ=0=0s(θ)θ=π2=ba2

Commented by ajfour last updated on 25/Jul/21

mgrcos θ=(mr^2 )((ωdω)/dθ)  ...(i)    mgrsin θ=(1/2)m(v^2 +v^2 )   +(1/2)m(ωr)^2 +mg(a+b−r)  ..(ii)  v=(dr/dt)=((ωdr)/dθ)    ...(iii)  L=a+b  ⇒  2g(rsin θ+r−L)                  =2(((ωdr)/dθ))^2 +(ωr)^2   ⇒  ω^2 =((2g(rsin θ+r−L))/(2((dr/dθ))^2 +r^2 ))  ((2ωdω)/dθ)=((2g((dr/dθ)sin θ+rcos θ+(dr/dθ)){2((dr/dθ))^2 +r^2 }−2g(rsin θ+r−L){4((dr/dθ))((d^2 r/dθ^2 ))+2r((dr/dθ))^2 })/({2((dr/dθ))^2 +r^2 }^2 ))     =((2gcos θ)/r)  ⇒  (((rdr)/dθ))(1+sin θ)  +r^2 cos θ{2((dr/dθ))^2 +r^2 }  −(r^2 sin θ+r^2 −Lr){4((dr/dθ))((d^2 r/dθ^2 ))+2r((dr/dθ))^2 }    =  cos θ{2((dr/dθ))^2 +r^2 }^2   difficult D.E. , sir.

mgrcosθ=(mr2)ωdωdθ...(i)mgrsinθ=12m(v2+v2)+12m(ωr)2+mg(a+br)..(ii)v=drdt=ωdrdθ...(iii)L=a+b2g(rsinθ+rL)=2(ωdrdθ)2+(ωr)2ω2=2g(rsinθ+rL)2(drdθ)2+r22ωdωdθ=2g(drdθsinθ+rcosθ+drdθ){2(drdθ)2+r2}2g(rsinθ+rL){4(drdθ)(d2rdθ2)+2r(drdθ)2}{2(drdθ)2+r2}2=2gcosθr(rdrdθ)(1+sinθ)+r2cosθ{2(drdθ)2+r2}(r2sinθ+r2Lr){4(drdθ)(d2rdθ2)+2r(drdθ)2}=cosθ{2(drdθ)2+r2}2difficultD.E.,sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com