All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 147867 by Khalmohmmad last updated on 24/Jul/21
∫secxdx=?
Answered by Olaf_Thorendsen last updated on 24/Jul/21
F(x)=∫secxdxF(x)=∫dxcosxLett=tanx2F(t)=∫11−t21+t2.2dt1+t2F(t)=∫(11−t+11+t)dtF(t)=ln∣1+t1−t∣+CF(x)=ln∣1+tanx21−tanx2∣+CF(x)=ln∣cosx2+sinx2cosx2−sinx2∣+CF(x)=ln∣2cos(π4−x2)2sin(π4−x2)∣+CF(x)=ln∣cot(π4−x2)∣+C
Answered by puissant last updated on 24/Jul/21
∫1cosxdx=∫cosxcos2xdx=∫cosx1−sin2xdxletu=sinx⇒du=cosxdx=∫11−u2du=12∫11+udu+12∫11−udu=12ln(1+u)−12ln(1−u)+k=12ln(1+u1−u)+k⇒I=12ln(1+sinx1−sinx)+k...
Answered by iloveisrael last updated on 24/Jul/21
∫secx(secx+tanxsecx+tanx)dx=∫sec2x+secxtanxsecx+tanxdx=∫d(secx+tanx)secx+tanx=ln∣secx+tanx∣+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com