Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 147879 by 0731619 last updated on 24/Jul/21

Answered by puissant last updated on 24/Jul/21

I=∫(1/(x^5 +1))dx  =∫(dx/((x+1)(x^4 −x^3 +x^2 −x+1)))  =∫((1/5)/(x+1))dx+∫((−(1/5)x^3 +(2/5)x^2 −(3/5)x+(4/5))/(x^4 −x^3 +x^2 −x+1))dx  =(1/5)ln∣x+1∣−(1/5)∫((x^3 −2x^2 +3x−4)/(x^4 −x^3 +x^2 −x+1))dx  =(1/5)ln∣x+1∣−(1/(20))∫((4x^3 −8x^2 +12x−16)/(x^4 −x^3 +x^2 −x+1))dx  =(1/5)ln∣x+1∣−(1/(20))ln∣x^4 −x^3 +x^2 −x+1∣+(1/(20))∫((5x^2 −14x+15)/(x^4 −x^3 +x^2 −x+1))dx  let Q=(1/(20))∫((5x^2 −14x+15)/(x^4 −x^3 +x^2 −x+1))dx  =(1/(20))∫((5x^2 −14x+15)/((x^2 +((((√5)−1)/2))x+1)(x^2 −((((√5)+1)/2))x+1)))dx  =(1/(20))∫((Ax+B)/((x^2 +((((√5)−1)/2))x+1)))dx+(1/(20))∫((Cx+D)/((x^2 −((((√5)+1)/2))x+1))dx  J=(1/(20))∫((Ax+b)/(x^2 +((((√5)−1)/2))x+1))dx  =(1/(20))∫((2(√5)x+((13+15(√5))/(2(√5))))/(x^2 +((((√5)−1)/2))x+1))dx=(1/(4(√5)))∫((2x+((13+15(√5))/(10)))/(x^2 +((((√5)−1)/2))x+1))dx  =(1/(4(√5)))∫((2x+(((√5)−1)/2))/(x^2 +((((√5)−1)/2))x+1))dx+(1/(4(√5)))∫((10(√5)+18)/(x^2 +((((√5)−1)/2))x+1))dx  =(1/(4(√5)))ln∣x^2 +((((√5)−1)/2))x+1∣+((10(√5)+18)/(40(√5)))∫(dx/((x+(((√5)−1)/2))^2 +((√((10+2(√5))/(16))))^2 ))  =(1/(4(√5)))ln∣x^2 +((((√5)−1)/2))x+1∣+((10(√5)+18)/(40(√5)))×(4/( (√(10+2(√5)))))arctan(((4x+(√5)−1)/( (√(10+2(√5))))))+C  De facon analogue, on trouve   (1/(20))∫((Cx+D)/(x^2 −((((√5)+1)/2))x+1))dx  =−(1/(4(√5)))ln∣x^2 −((((√5)−1)/2))x+1∣−((10(√5)+18)/(40(√5)))×(4/( (√(10−2(√5)))))arctan(((4x−(√5)−1)/( (√(10−2(√5))))))+C  apres sommation, on trouve:    I=(1/5)ln∣x+1∣−(1/(20))ln∣x^4 −x^3 +x^2 −x+1∣+(1/(4(√5)))ln∣x^2 +((((√5)−1)/2))x+1∣  +((10(√5)+18)/(10(√5)))×(1/( (√(10+2(√5)))))arctan(((4x+(√5)−1)/( (√(10+2(√5))))))−(1/(4(√5)))ln∣x^2 −((((√5)+1)/2))x+1∣  +((10(√5)−18)/(10(√5)))×(1/( (√(10−2(√5)))))arctan(((4x−(√5)−1)/2))+K...

I=1x5+1dx=dx(x+1)(x4x3+x2x+1)=15x+1dx+15x3+25x235x+45x4x3+x2x+1dx=15lnx+115x32x2+3x4x4x3+x2x+1dx=15lnx+11204x38x2+12x16x4x3+x2x+1dx=15lnx+1120lnx4x3+x2x+1+1205x214x+15x4x3+x2x+1dxletQ=1205x214x+15x4x3+x2x+1dx=1205x214x+15(x2+(512)x+1)(x2(5+12)x+1)dx=120Ax+B(x2+(512)x+1)dx+120Cx+D(x2(5+12)x+1dxJ=120Ax+bx2+(512)x+1dx=12025x+13+15525x2+(512)x+1dx=1452x+13+15510x2+(512)x+1dx=1452x+512x2+(512)x+1dx+145105+18x2+(512)x+1dx=145lnx2+(512)x+1+105+18405dx(x+512)2+(10+2516)2=145lnx2+(512)x+1+105+18405×410+25arctan(4x+5110+25)+CDefaconanalogue,ontrouve120Cx+Dx2(5+12)x+1dx=145lnx2(512)x+1105+18405×41025arctan(4x511025)+Capressommation,ontrouve:I=15lnx+1120lnx4x3+x2x+1+145lnx2+(512)x+1+105+18105×110+25arctan(4x+5110+25)145lnx2(5+12)x+1+10518105×11025arctan(4x512)+K...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com