All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 147879 by 0731619 last updated on 24/Jul/21
Answered by puissant last updated on 24/Jul/21
I=∫1x5+1dx=∫dx(x+1)(x4−x3+x2−x+1)=∫15x+1dx+∫−15x3+25x2−35x+45x4−x3+x2−x+1dx=15ln∣x+1∣−15∫x3−2x2+3x−4x4−x3+x2−x+1dx=15ln∣x+1∣−120∫4x3−8x2+12x−16x4−x3+x2−x+1dx=15ln∣x+1∣−120ln∣x4−x3+x2−x+1∣+120∫5x2−14x+15x4−x3+x2−x+1dxletQ=120∫5x2−14x+15x4−x3+x2−x+1dx=120∫5x2−14x+15(x2+(5−12)x+1)(x2−(5+12)x+1)dx=120∫Ax+B(x2+(5−12)x+1)dx+120∫Cx+D(x2−(5+12)x+1dxJ=120∫Ax+bx2+(5−12)x+1dx=120∫25x+13+15525x2+(5−12)x+1dx=145∫2x+13+15510x2+(5−12)x+1dx=145∫2x+5−12x2+(5−12)x+1dx+145∫105+18x2+(5−12)x+1dx=145ln∣x2+(5−12)x+1∣+105+18405∫dx(x+5−12)2+(10+2516)2=145ln∣x2+(5−12)x+1∣+105+18405×410+25arctan(4x+5−110+25)+CDefaconanalogue,ontrouve120∫Cx+Dx2−(5+12)x+1dx=−145ln∣x2−(5−12)x+1∣−105+18405×410−25arctan(4x−5−110−25)+Capressommation,ontrouve:I=15ln∣x+1∣−120ln∣x4−x3+x2−x+1∣+145ln∣x2+(5−12)x+1∣+105+18105×110+25arctan(4x+5−110+25)−145ln∣x2−(5+12)x+1∣+105−18105×110−25arctan(4x−5−12)+K...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com