Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 147948 by tabata last updated on 24/Jul/21

Commented by tabata last updated on 24/Jul/21

Msr olaf help me please ?

$${Msr}\:{olaf}\:{help}\:{me}\:{please}\:? \\ $$

Answered by Olaf_Thorendsen last updated on 24/Jul/21

h(z) = (1/(z^2 sinhz)) = ((f(z))/z^2 ), ∣z∣ < R  The zeros of sinh(z) are {kπi}_(k∈Z)   so  the highest possible value for R is π.    For ∣z∣<π, we have  f(z) = (1/(sinhz)) = (1/(z+(z^3 /(3!))+(z^5 /(5!))+(z^7 /(7!))...))  f(z) = (1/z).(1/(1+((z^2 /6)+(z^4 /(120))+(z^6 /(5040))...)))  f(z) = (1/z)(1−((z^2 /6)+(z^4 /(120))+(z^6 /(5040))+...)+((z^2 /6)+(z^4 /(120))+(z^6 /(5040))+...)^2 +...)  f(z) = (1/z)(1−(z^2 /6)−(z^4 /(120))−(z^6 /(5040))+(z^4 /(36))+(z^6 /(360))...)  f(z) = (1/z)(1−(z^2 /6)+((7z^4 )/(360))+((13z^6 )/(5040))+...)  ⇒ h(z) = (1/z^3 )−(1/(6z))+((7z)/(360))+((13z^3 )/(5040))+...

$${h}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}^{\mathrm{2}} \mathrm{sinh}{z}}\:=\:\frac{{f}\left({z}\right)}{{z}^{\mathrm{2}} },\:\mid{z}\mid\:<\:\mathrm{R} \\ $$$$\mathrm{The}\:\mathrm{zeros}\:\mathrm{of}\:\mathrm{sinh}\left({z}\right)\:\mathrm{are}\:\left\{{k}\pi{i}\right\}_{{k}\in\mathbb{Z}} \:\:\mathrm{so} \\ $$$$\mathrm{the}\:\mathrm{highest}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{for}\:\mathrm{R}\:\mathrm{is}\:\pi. \\ $$$$ \\ $$$$\mathrm{For}\:\mid{z}\mid<\pi,\:\mathrm{we}\:\mathrm{have} \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{1}}{\mathrm{sinh}{z}}\:=\:\frac{\mathrm{1}}{{z}+\frac{{z}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{z}^{\mathrm{5}} }{\mathrm{5}!}+\frac{{z}^{\mathrm{7}} }{\mathrm{7}!}...} \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}}.\frac{\mathrm{1}}{\mathrm{1}+\left(\frac{{z}^{\mathrm{2}} }{\mathrm{6}}+\frac{{z}^{\mathrm{4}} }{\mathrm{120}}+\frac{{z}^{\mathrm{6}} }{\mathrm{5040}}...\right)} \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}}\left(\mathrm{1}−\left(\frac{{z}^{\mathrm{2}} }{\mathrm{6}}+\frac{{z}^{\mathrm{4}} }{\mathrm{120}}+\frac{{z}^{\mathrm{6}} }{\mathrm{5040}}+...\right)+\left(\frac{{z}^{\mathrm{2}} }{\mathrm{6}}+\frac{{z}^{\mathrm{4}} }{\mathrm{120}}+\frac{{z}^{\mathrm{6}} }{\mathrm{5040}}+...\right)^{\mathrm{2}} +...\right) \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\mathrm{6}}−\frac{{z}^{\mathrm{4}} }{\mathrm{120}}−\frac{{z}^{\mathrm{6}} }{\mathrm{5040}}+\frac{{z}^{\mathrm{4}} }{\mathrm{36}}+\frac{{z}^{\mathrm{6}} }{\mathrm{360}}...\right) \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\mathrm{6}}+\frac{\mathrm{7}{z}^{\mathrm{4}} }{\mathrm{360}}+\frac{\mathrm{13}{z}^{\mathrm{6}} }{\mathrm{5040}}+...\right) \\ $$$$\Rightarrow\:{h}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{6}{z}}+\frac{\mathrm{7}{z}}{\mathrm{360}}+\frac{\mathrm{13}{z}^{\mathrm{3}} }{\mathrm{5040}}+... \\ $$

Commented by tabata last updated on 24/Jul/21

thank you msr olaf

$${thank}\:{you}\:{msr}\:{olaf}\: \\ $$

Commented by tabata last updated on 24/Jul/21

sir can how exactly ((z^2 /6)+(z^4 /(120))+(z^6 /(5040))+...)^2 how me solution please?

$${sir}\:{can}\:{how}\:{exactly}\:\left(\frac{{z}^{\mathrm{2}} }{\mathrm{6}}+\frac{{z}^{\mathrm{4}} }{\mathrm{120}}+\frac{{z}^{\mathrm{6}} }{\mathrm{5040}}+...\right)^{\mathrm{2}} {how}\:{me}\:{solution}\:{please}? \\ $$

Commented by tabata last updated on 24/Jul/21

and sir how (1/z)(1−(z^2 /6)+((7z^4 )/(360))+((13z^6 )/(5040))+...)=(1/z^3 )−(1/(6z))+((7z)/(360))+((13z^3 )/(5040))    i want clearly that because its very hard ?

$${and}\:{sir}\:{how}\:\frac{\mathrm{1}}{{z}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\mathrm{6}}+\frac{\mathrm{7}{z}^{\mathrm{4}} }{\mathrm{360}}+\frac{\mathrm{13}{z}^{\mathrm{6}} }{\mathrm{5040}}+...\right)=\frac{\mathrm{1}}{{z}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{6}{z}}+\frac{\mathrm{7}{z}}{\mathrm{360}}+\frac{\mathrm{13}{z}^{\mathrm{3}} }{\mathrm{5040}} \\ $$$$ \\ $$$${i}\:{want}\:{clearly}\:{that}\:{because}\:{its}\:{very}\:{hard}\:? \\ $$

Commented by Olaf_Thorendsen last updated on 24/Jul/21

sinhx = Σ_(n=0) ^∞ (x^(2n+1) /((2n+1)!))  (1/(1+u)) = Σ_(n=0) ^∞ (−1)^n u^n

$$\mathrm{sinh}{x}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}+{u}}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {u}^{{n}} \\ $$

Commented by mr W last updated on 24/Jul/21

please recheck sir:  i think it should be  f(z) = (1/z)(1−(z^2 /6)−(z^4 /(120))−(z^6 /(5040))+(z^4 /(36))+(z^6 /(360))−(z^6 /(216))...)  f(z) = (1/z)(1−(z^2 /6)+((7z^4 )/(360))−((31z^6 )/(15120))+...)  ⇒ h(z) = (1/z^3 )−(1/(6z))+((7z)/(360))−((31z^3 )/(15120))+...

$${please}\:{recheck}\:{sir}: \\ $$$${i}\:{think}\:{it}\:{should}\:{be} \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\mathrm{6}}−\frac{{z}^{\mathrm{4}} }{\mathrm{120}}−\frac{{z}^{\mathrm{6}} }{\mathrm{5040}}+\frac{{z}^{\mathrm{4}} }{\mathrm{36}}+\frac{{z}^{\mathrm{6}} }{\mathrm{360}}−\frac{{z}^{\mathrm{6}} }{\mathrm{216}}...\right) \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}}\left(\mathrm{1}−\frac{{z}^{\mathrm{2}} }{\mathrm{6}}+\frac{\mathrm{7}{z}^{\mathrm{4}} }{\mathrm{360}}−\frac{\mathrm{31}{z}^{\mathrm{6}} }{\mathrm{15120}}+...\right) \\ $$$$\Rightarrow\:{h}\left({z}\right)\:=\:\frac{\mathrm{1}}{{z}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{6}{z}}+\frac{\mathrm{7}{z}}{\mathrm{360}}−\frac{\mathrm{31}{z}^{\mathrm{3}} }{\mathrm{15120}}+... \\ $$

Commented by Olaf_Thorendsen last updated on 24/Jul/21

You are right mister. I forgot one term.

$$\mathrm{You}\:\mathrm{are}\:\mathrm{right}\:\mathrm{mister}.\:\mathrm{I}\:\mathrm{forgot}\:\mathrm{one}\:\mathrm{term}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com