Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 147992 by Sozan last updated on 24/Jul/21

Commented by Sozan last updated on 25/Jul/21

who is can solve this please ?

whoiscansolvethisplease?

Answered by mathmax by abdo last updated on 25/Jul/21

Ψ=∫_0 ^(2π)  ((sin(2x))/(3+4sinx)) ⇒Ψ=∫_0 ^(2π)  ((2sinx.cosx)/(3+4sinx))dx  =_(e^(ix)  =z)   ∫_(∣z∣=1)     ((2((z−z^(−1) )/(2i)).((z+z^(−1) )/2))/(3+4((z−z^(−1) )/(2i)))) (dz/(iz))  =∫_(∣z∣=1)    ((z^2 −z^(−2) )/(iz(6i+4z−4z^(−1) )))dz =−i∫_(∣z∣=1)   ((z^2 −z^(−2) )/(6iz+4z^2 −4))dz  =−(i/2)∫_(∣z∣=1)    ((z^2 −z^(−2) )/(2z^2 +3iz−2))dz  let ϕ(z)=((z^2 −z^(−2) )/(2z^2 +3iz−2))  poles?  Δ=−9−4(−4) =16−9=7 ⇒z_1 =((−3i+(√7))/4)  z_2 =((−3i−(√7))/4)  ∣z_1 ∣−1 =(1/4)(√(9+7))−1 =0 ⇒∣z_1 ∣=1  z_1 z_2 =1 ⇒∣z_2 ∣=1  residus ⇒∫_(∣z∣=1)   ϕ(z)dz=2iπ{Res(ϕ,z_1 )+Res(ϕ,z_2 )}  but Re(ϕ,z_2 )=−Res(ϕ,z_1 )⇒∫_(∣z∣=1)  ϕ(z)dz=0 ⇒Ψ=0  another way Ψ=∫_0 ^π ()dx +∫_π ^(2π) ()dx =_(x=π+α) ∫_0 ^π  ((sin2x)/(3+4sinx))dx +∫_0 ^π  ((sin(2α))/(3−4sinα))dα  =∫_0 ^π  sin(2x){(1/(3+4sinx))+(1/(3−4sinx))}dx  =∫_0 ^π ((6sin(2x))/(9−16sin^2 x))dx =∫_0 ^π  ((6sin(2x))/(9−16(1−cos^2 x)))dx  =∫_0 ^π  ((6sin(2x))/(16cos^2 x−7))dx =∫_0 ^π  ((6sin(2x))/(16.((1+cos(2x))/2)−7))dx  =∫_0 ^π  ((6sin(2x))/(1+8cos(2x)))dx =(6/(16))∫_0 ^π  ((16sin(2x))/(8cos(2x)+1))dx  =(3/8)[ln∣8cos(2x)+1∣]_0 ^π  =(3/8){ln9−log9}=0

Ψ=02πsin(2x)3+4sinxΨ=02π2sinx.cosx3+4sinxdx=eix=zz∣=12zz12i.z+z123+4zz12idziz=z∣=1z2z2iz(6i+4z4z1)dz=iz∣=1z2z26iz+4z24dz=i2z∣=1z2z22z2+3iz2dzletφ(z)=z2z22z2+3iz2poles?Δ=94(4)=169=7z1=3i+74z2=3i74z11=149+71=0⇒∣z1∣=1z1z2=1⇒∣z2∣=1residusz∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}butRe(φ,z2)=Res(φ,z1)z∣=1φ(z)dz=0Ψ=0anotherwayΨ=0π()dx+π2π()dx=x=π+α0πsin2x3+4sinxdx+0πsin(2α)34sinαdα=0πsin(2x){13+4sinx+134sinx}dx=0π6sin(2x)916sin2xdx=0π6sin(2x)916(1cos2x)dx=0π6sin(2x)16cos2x7dx=0π6sin(2x)16.1+cos(2x)27dx=0π6sin(2x)1+8cos(2x)dx=6160π16sin(2x)8cos(2x)+1dx=38[ln8cos(2x)+1]0π=38{ln9log9}=0

Commented by tabata last updated on 25/Jul/21

msr mathmax by abdo can you help me in question 148064 plese

msrmathmaxbyabdocanyouhelpmeinquestion148064plese

Terms of Service

Privacy Policy

Contact: info@tinkutara.com