All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 147992 by Sozan last updated on 24/Jul/21
Commented by Sozan last updated on 25/Jul/21
whoiscansolvethisplease?
Answered by mathmax by abdo last updated on 25/Jul/21
Ψ=∫02πsin(2x)3+4sinx⇒Ψ=∫02π2sinx.cosx3+4sinxdx=eix=z∫∣z∣=12z−z−12i.z+z−123+4z−z−12idziz=∫∣z∣=1z2−z−2iz(6i+4z−4z−1)dz=−i∫∣z∣=1z2−z−26iz+4z2−4dz=−i2∫∣z∣=1z2−z−22z2+3iz−2dzletφ(z)=z2−z−22z2+3iz−2poles?Δ=−9−4(−4)=16−9=7⇒z1=−3i+74z2=−3i−74∣z1∣−1=149+7−1=0⇒∣z1∣=1z1z2=1⇒∣z2∣=1residus⇒∫∣z∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}butRe(φ,z2)=−Res(φ,z1)⇒∫∣z∣=1φ(z)dz=0⇒Ψ=0anotherwayΨ=∫0π()dx+∫π2π()dx=x=π+α∫0πsin2x3+4sinxdx+∫0πsin(2α)3−4sinαdα=∫0πsin(2x){13+4sinx+13−4sinx}dx=∫0π6sin(2x)9−16sin2xdx=∫0π6sin(2x)9−16(1−cos2x)dx=∫0π6sin(2x)16cos2x−7dx=∫0π6sin(2x)16.1+cos(2x)2−7dx=∫0π6sin(2x)1+8cos(2x)dx=616∫0π16sin(2x)8cos(2x)+1dx=38[ln∣8cos(2x)+1∣]0π=38{ln9−log9}=0
Commented by tabata last updated on 25/Jul/21
msrmathmaxbyabdocanyouhelpmeinquestion148064plese
Terms of Service
Privacy Policy
Contact: info@tinkutara.com