Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 148000 by vvvv last updated on 25/Jul/21

∫_(−∞) ^(+∞) (dx/((x^2 +k^2 )^(3/2) ))

$$\underset{−\infty} {\overset{+\infty} {\int}}\frac{\boldsymbol{{dx}}}{\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$

Answered by gsk2684 last updated on 25/Jul/21

2∫_(x=0) ^∞ (dx/(x^3 (1+(k^2 /x^2 ))^(3/2) ))   changement 1+(k^2 /x^2 )=t ⇒ −((2k^2 )/x^3 )dx=dt  2∫_(t=∞) ^1 t^(−(3/2))  (dt/(−2k^2 ))=((−1)/k^2 )[(t^(((−3)/2)+1) /(−(3/2)+1))]_∞ ^1   =((−1)/k^2 )[(t^(−(1/2)) /(−(1/2)))]_∞ ^1 =(2/k^2 )[(1/( (√t)))]_∞ ^1 =(2/k^2 )[1−0]=(2/k^2 )

$$\mathrm{2}\underset{{x}=\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{x}^{\mathrm{2}} }\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\: \\ $$$${changement}\:\mathrm{1}+\frac{{k}^{\mathrm{2}} }{{x}^{\mathrm{2}} }={t}\:\Rightarrow\:−\frac{\mathrm{2}{k}^{\mathrm{2}} }{{x}^{\mathrm{3}} }{dx}={dt} \\ $$$$\mathrm{2}\underset{{t}=\infty} {\overset{\mathrm{1}} {\int}}{t}^{−\frac{\mathrm{3}}{\mathrm{2}}} \:\frac{{dt}}{−\mathrm{2}{k}^{\mathrm{2}} }=\frac{−\mathrm{1}}{{k}^{\mathrm{2}} }\left[\frac{{t}^{\frac{−\mathrm{3}}{\mathrm{2}}+\mathrm{1}} }{−\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}}\right]_{\infty} ^{\mathrm{1}} \\ $$$$=\frac{−\mathrm{1}}{{k}^{\mathrm{2}} }\left[\frac{{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} }{−\frac{\mathrm{1}}{\mathrm{2}}}\right]_{\infty} ^{\mathrm{1}} =\frac{\mathrm{2}}{{k}^{\mathrm{2}} }\left[\frac{\mathrm{1}}{\:\sqrt{{t}}}\right]_{\infty} ^{\mathrm{1}} =\frac{\mathrm{2}}{{k}^{\mathrm{2}} }\left[\mathrm{1}−\mathrm{0}\right]=\frac{\mathrm{2}}{{k}^{\mathrm{2}} } \\ $$

Answered by mathmax by abdo last updated on 25/Jul/21

U_k =∫_(−∞) ^(+∞)  (dx/((x^2  +k^2 )^(3/2) ))  changement x=ktanθ give  U_k =∫_(−(π/2)) ^(π/2)  ((k(1+tan^2 θ))/(k^3 (1+tan^2 θ)^(3/2) ))dθ =(1/k^2 )∫_(−(π/2)) ^(π/2)  (dθ/( (√(1+tan^2 θ))))  =(1/k^2 )∫_(−(π/2)) ^(π/2) cosθ dθ =(1/k^2 )[sinθ]_(−(π/2)) ^(π/2)  =(1/k^2 )(1−(−1)) =(2/k^2 )    (k≠0)

$$\mathrm{U}_{\mathrm{k}} =\int_{−\infty} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{k}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:\mathrm{changement}\:\mathrm{x}=\mathrm{ktan}\theta\:\mathrm{give} \\ $$$$\mathrm{U}_{\mathrm{k}} =\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{k}\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)}{\mathrm{k}^{\mathrm{3}} \left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\mathrm{d}\theta\:=\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{d}\theta}{\:\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\theta\:\mathrm{d}\theta\:=\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\left[\mathrm{sin}\theta\right]_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }\left(\mathrm{1}−\left(−\mathrm{1}\right)\right)\:=\frac{\mathrm{2}}{\mathrm{k}^{\mathrm{2}} }\:\:\:\:\left(\mathrm{k}\neq\mathrm{0}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com