Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 148222 by BHOOPENDRA last updated on 26/Jul/21

Answered by iloveisrael last updated on 26/Jul/21

v_3 =λv_1 +αv_2    (((−3)),((    4)),((    7)) ) =  (((  λ)),((  0)),((−λ)) ) + (((  0)),((2α)),((2α)) )    { ((λ=−3)),((α=2)) :}⇒v_3 =−3v_1 +2v_2

$$\mathrm{v}_{\mathrm{3}} =\lambda\mathrm{v}_{\mathrm{1}} +\alpha\mathrm{v}_{\mathrm{2}} \\ $$$$\begin{pmatrix}{−\mathrm{3}}\\{\:\:\:\:\mathrm{4}}\\{\:\:\:\:\mathrm{7}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\:\lambda}\\{\:\:\mathrm{0}}\\{−\lambda}\end{pmatrix}\:+\begin{pmatrix}{\:\:\mathrm{0}}\\{\mathrm{2}\alpha}\\{\mathrm{2}\alpha}\end{pmatrix} \\ $$$$\:\begin{cases}{\lambda=−\mathrm{3}}\\{\alpha=\mathrm{2}}\end{cases}\Rightarrow\mathrm{v}_{\mathrm{3}} =−\mathrm{3v}_{\mathrm{1}} +\mathrm{2v}_{\mathrm{2}} \\ $$

Commented by BHOOPENDRA last updated on 26/Jul/21

what about the other two sir ?

$${what}\:{about}\:{the}\:{other}\:{two}\:{sir}\:? \\ $$

Answered by Olaf_Thorendsen last updated on 26/Jul/21

  (ii)  Let v =  ((x),(y),(z) ) ∈ W  then ∃(α,β,γ)∈R^3  \ v = αv_1 +αv_2 +γv_3   v = αv_1 +βv_2 +γ(−3v_1 +2v_2 )  v = (α−3γ)v_1 +(β+2γ)v_2   Let a = α−3γ and b = β+2γ  then ∃(a,b)∈R^2  \ v = av_1 +bv_2   That proves that (v_1 ,v_2 ) generates W.    (iii)  We solve the equation  λv_1 +μv_2  = 0_W    (1)  ⇔ λ ((1),(0),((−1)) )+μ ((0),(2),(2) )  =  ((0),(0),(0) )  ⇔ (λ,μ) = (0,0)  We canno′t find (λ,μ)∈R^2 −{(0,0)}  such that (1) is true.  That proves that v_1  and v_2  are  linearly independent.

$$ \\ $$$$\left(\mathrm{ii}\right) \\ $$$$\mathrm{Let}\:{v}\:=\:\begin{pmatrix}{{x}}\\{{y}}\\{{z}}\end{pmatrix}\:\in\:{W} \\ $$$$\mathrm{then}\:\exists\left(\alpha,\beta,\gamma\right)\in\mathbb{R}^{\mathrm{3}} \:\backslash\:{v}\:=\:\alpha{v}_{\mathrm{1}} +\alpha{v}_{\mathrm{2}} +\gamma{v}_{\mathrm{3}} \\ $$$${v}\:=\:\alpha{v}_{\mathrm{1}} +\beta{v}_{\mathrm{2}} +\gamma\left(−\mathrm{3}{v}_{\mathrm{1}} +\mathrm{2}{v}_{\mathrm{2}} \right) \\ $$$${v}\:=\:\left(\alpha−\mathrm{3}\gamma\right){v}_{\mathrm{1}} +\left(\beta+\mathrm{2}\gamma\right){v}_{\mathrm{2}} \\ $$$$\mathrm{Let}\:{a}\:=\:\alpha−\mathrm{3}\gamma\:\mathrm{and}\:{b}\:=\:\beta+\mathrm{2}\gamma \\ $$$$\mathrm{then}\:\exists\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} \:\backslash\:{v}\:=\:{av}_{\mathrm{1}} +{bv}_{\mathrm{2}} \\ $$$$\mathrm{That}\:\mathrm{proves}\:\mathrm{that}\:\left({v}_{\mathrm{1}} ,{v}_{\mathrm{2}} \right)\:\mathrm{generates}\:{W}. \\ $$$$ \\ $$$$\left(\mathrm{iii}\right) \\ $$$$\mathrm{We}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\lambda{v}_{\mathrm{1}} +\mu{v}_{\mathrm{2}} \:=\:\mathrm{0}_{{W}} \:\:\:\left(\mathrm{1}\right) \\ $$$$\Leftrightarrow\:\lambda\begin{pmatrix}{\mathrm{1}}\\{\mathrm{0}}\\{−\mathrm{1}}\end{pmatrix}+\mu\begin{pmatrix}{\mathrm{0}}\\{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}\:\:=\:\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\Leftrightarrow\:\left(\lambda,\mu\right)\:=\:\left(\mathrm{0},\mathrm{0}\right) \\ $$$$\mathrm{We}\:\mathrm{canno}'\mathrm{t}\:\mathrm{find}\:\left(\lambda,\mu\right)\in\mathbb{R}^{\mathrm{2}} −\left\{\left(\mathrm{0},\mathrm{0}\right)\right\} \\ $$$$\mathrm{such}\:\mathrm{that}\:\left(\mathrm{1}\right)\:\mathrm{is}\:\mathrm{true}. \\ $$$$\mathrm{That}\:\mathrm{proves}\:\mathrm{that}\:{v}_{\mathrm{1}} \:\mathrm{and}\:{v}_{\mathrm{2}} \:\mathrm{are} \\ $$$$\mathrm{linearly}\:\mathrm{independent}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com