Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 148323 by liberty last updated on 27/Jul/21

   lim_(x→0)  ((5sin x−7sin 2x+3sin 3x)/(tan x−x)) =?

limx05sinx7sin2x+3sin3xtanxx=?

Answered by EDWIN88 last updated on 27/Jul/21

 lim_(x→0)  ((5cos x−14cos 2x+9cos 3x)/(sec^2 x−1))  lim_(x→0)  ((5cos x−14(2cos^2 x−1)+9(4cos^3 x−3cos x))/((sec x−1)(sec x+1)))  =lim_(x→0)  ((5cos x−28cos^2 x+14+36cos^3 x−27cos x)/((sec x−1)(sec x+1)))  =lim_(x→0) ((36cos^3 x−28cos^2 x−22cos x+14)/((sec x−1)(sec x+1)))  =lim_(x→0) (((cos x−1)(36cos^2 x+8cos x−14))/((((1−cos x)/(cos x)))(sec x+1)))  =lim_(x→0)  ((cos x(36cos^2 x+8cos x−14))/(sec x+1)) .lim_(x→0) ((cos x−1)/(1−cos x))  = −((36+8−14)/2)=−15 .

limx05cosx14cos2x+9cos3xsec2x1limx05cosx14(2cos2x1)+9(4cos3x3cosx)(secx1)(secx+1)=limx05cosx28cos2x+14+36cos3x27cosx(secx1)(secx+1)=limx036cos3x28cos2x22cosx+14(secx1)(secx+1)=limx0(cosx1)(36cos2x+8cosx14)(1cosxcosx)(secx+1)=limx0cosx(36cos2x+8cosx14)secx+1.limx0cosx11cosx=36+8142=15.

Answered by lyubita last updated on 27/Jul/21

       lim_(x→0)  ((5sin x − 7sin 2x + 3sin 3x)/(tan x − x))   =  lim_(x→0)  ((5cos x − 14cos 2x + 9cos 3x)/(sec^2  x − 1))     (l′hopital)       =  lim_(x→0)  ((5(1 −2sin^2  (1/2)x) − 14(1 − 2sin^2  x)+ 9(1 − 2sin^2  (3/2)x))/(tan^2  x))       =  lim_(x→0)  ((−10sin^2  (1/2)x + 28sin^2  x − 18sin^2  (3/2)x)/(tan^2  x))      = −(5/2) + 28 − ((81)/2)  = −15

limx05sinx7sin2x+3sin3xtanxx=limx05cosx14cos2x+9cos3xsec2x1(lhopital)=limx05(12sin212x)14(12sin2x)+9(12sin232x)tan2x=limx010sin212x+28sin2x18sin232xtan2x=52+28812=15

Terms of Service

Privacy Policy

Contact: info@tinkutara.com