All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 148323 by liberty last updated on 27/Jul/21
limx→05sinx−7sin2x+3sin3xtanx−x=?
Answered by EDWIN88 last updated on 27/Jul/21
limx→05cosx−14cos2x+9cos3xsec2x−1limx→05cosx−14(2cos2x−1)+9(4cos3x−3cosx)(secx−1)(secx+1)=limx→05cosx−28cos2x+14+36cos3x−27cosx(secx−1)(secx+1)=limx→036cos3x−28cos2x−22cosx+14(secx−1)(secx+1)=limx→0(cosx−1)(36cos2x+8cosx−14)(1−cosxcosx)(secx+1)=limx→0cosx(36cos2x+8cosx−14)secx+1.limx→0cosx−11−cosx=−36+8−142=−15.
Answered by lyubita last updated on 27/Jul/21
limx→05sinx−7sin2x+3sin3xtanx−x=limx→05cosx−14cos2x+9cos3xsec2x−1(l′hopital)=limx→05(1−2sin212x)−14(1−2sin2x)+9(1−2sin232x)tan2x=limx→0−10sin212x+28sin2x−18sin232xtan2x=−52+28−812=−15
Terms of Service
Privacy Policy
Contact: info@tinkutara.com