Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 148371 by mathmax by abdo last updated on 27/Jul/21

calculate ∫_γ ze^(2/z^2 ) dz   with γ(t)=(√3)e^(it)       t∈[0,2π]

$$\mathrm{calculate}\:\int_{\gamma} \mathrm{ze}^{\frac{\mathrm{2}}{\mathrm{z}^{\mathrm{2}} }} \mathrm{dz}\:\:\:\mathrm{with}\:\gamma\left(\mathrm{t}\right)=\sqrt{\mathrm{3}}\mathrm{e}^{\mathrm{it}} \:\:\:\:\:\:\mathrm{t}\in\left[\mathrm{0},\mathrm{2}\pi\right] \\ $$

Answered by mathmax by abdo last updated on 27/Jul/21

let f(z)=ze^(2/z^2 )      le seul point singulier de f is0 ⇒  ∫_γ f(z)dz =2iπ Res(f,o)  on determine la serie de laurent  on e^u  =Σ_(n=0) ^∞  (u^n /(n!)) ⇒e^(2/z^2 )   =Σ_(n=0) ^∞  (1/(n!))((2/z^2 ))^n   =Σ_(n=0) ^∞  (2^n /(n! z^(2n) )) ⇒f(z)=z Σ_(n=0) ^∞  (2^n /(n! z^(2n) ))  =z{1+(2/(1!z^2 )) +(4/(2!z^4 ))+...} =z +(2/z) +(4/(2z^3 ))+... ⇒Res(f,o)=2 ⇒  ∫_γ f(z)dz =2iπ(2) =4iπ

$$\mathrm{let}\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{ze}^{\frac{\mathrm{2}}{\mathrm{z}^{\mathrm{2}} }} \:\:\:\:\:\mathrm{le}\:\mathrm{seul}\:\mathrm{point}\:\mathrm{singulier}\:\mathrm{de}\:\mathrm{f}\:\mathrm{is0}\:\Rightarrow \\ $$$$\int_{\gamma} \mathrm{f}\left(\mathrm{z}\right)\mathrm{dz}\:=\mathrm{2i}\pi\:\mathrm{Res}\left(\mathrm{f},\mathrm{o}\right)\:\:\mathrm{on}\:\mathrm{determine}\:\mathrm{la}\:\mathrm{serie}\:\mathrm{de}\:\mathrm{laurent} \\ $$$$\mathrm{on}\:\mathrm{e}^{\mathrm{u}} \:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{u}^{\mathrm{n}} }{\mathrm{n}!}\:\Rightarrow\mathrm{e}^{\frac{\mathrm{2}}{\mathrm{z}^{\mathrm{2}} }} \:\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}!}\left(\frac{\mathrm{2}}{\mathrm{z}^{\mathrm{2}} }\right)^{\mathrm{n}} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}^{\mathrm{n}} }{\mathrm{n}!\:\mathrm{z}^{\mathrm{2n}} }\:\Rightarrow\mathrm{f}\left(\mathrm{z}\right)=\mathrm{z}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}^{\mathrm{n}} }{\mathrm{n}!\:\mathrm{z}^{\mathrm{2n}} } \\ $$$$=\mathrm{z}\left\{\mathrm{1}+\frac{\mathrm{2}}{\mathrm{1}!\mathrm{z}^{\mathrm{2}} }\:+\frac{\mathrm{4}}{\mathrm{2}!\mathrm{z}^{\mathrm{4}} }+...\right\}\:=\mathrm{z}\:+\frac{\mathrm{2}}{\mathrm{z}}\:+\frac{\mathrm{4}}{\mathrm{2z}^{\mathrm{3}} }+...\:\Rightarrow\mathrm{Res}\left(\mathrm{f},\mathrm{o}\right)=\mathrm{2}\:\Rightarrow \\ $$$$\int_{\gamma} \mathrm{f}\left(\mathrm{z}\right)\mathrm{dz}\:=\mathrm{2i}\pi\left(\mathrm{2}\right)\:=\mathrm{4i}\pi \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com