Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 148376 by ArielVyny last updated on 27/Jul/21

∫_1 ^∞ x^i lnxdx      i^2 =−1

$$\int_{\mathrm{1}} ^{\infty} {x}^{{i}} {lnxdx}\:\:\:\:\:\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$

Answered by mathmax by abdo last updated on 27/Jul/21

I=∫_1 ^∞  x^i logx dx cha7gement logx=t give x=e^t  ⇒  I=∫_0 ^∞  (e^t )^i t e^(t ) dt=∫_0 ^∞ t e^(it+t)  dt =∫_0 ^∞  t e^((1+i)t)  dt  =_((1+i)t=z)    ∫_0 ^∞  (z/(1+i))e^z  (dz/(1+i))=(1/((1+i)^2 ))∫_0 ^∞  ze^z  dz by parts  but ∫_0 ^∞  ze^(z )  dz is divergent...!

$$\mathrm{I}=\int_{\mathrm{1}} ^{\infty} \:\mathrm{x}^{\mathrm{i}} \mathrm{logx}\:\mathrm{dx}\:\mathrm{cha7gement}\:\mathrm{logx}=\mathrm{t}\:\mathrm{give}\:\mathrm{x}=\mathrm{e}^{\mathrm{t}} \:\Rightarrow \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \:\left(\mathrm{e}^{\mathrm{t}} \right)^{\mathrm{i}} \mathrm{t}\:\mathrm{e}^{\mathrm{t}\:} \mathrm{dt}=\int_{\mathrm{0}} ^{\infty} \mathrm{t}\:\mathrm{e}^{\mathrm{it}+\mathrm{t}} \:\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}\:\mathrm{e}^{\left(\mathrm{1}+\mathrm{i}\right)\mathrm{t}} \:\mathrm{dt} \\ $$$$=_{\left(\mathrm{1}+\mathrm{i}\right)\mathrm{t}=\mathrm{z}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{z}}{\mathrm{1}+\mathrm{i}}\mathrm{e}^{\mathrm{z}} \:\frac{\mathrm{dz}}{\mathrm{1}+\mathrm{i}}=\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{i}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:\mathrm{ze}^{\mathrm{z}} \:\mathrm{dz}\:\mathrm{by}\:\mathrm{parts} \\ $$$$\mathrm{but}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{ze}^{\mathrm{z}\:} \:\mathrm{dz}\:\mathrm{is}\:\mathrm{divergent}...! \\ $$

Commented by ArielVyny last updated on 28/Jul/21

thank sir

$${thank}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com