All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 148408 by cesarL last updated on 27/Jul/21
∫x5ex2dxHelpplease!
Answered by Olaf_Thorendsen last updated on 27/Jul/21
F(x)=∫x5ex2dxF(x)=∫12x4(2xex2)dxF(x)=12x4ex2−∫2x3ex2dxF(x)=12x4ex2−∫x2(2xex2)dxF(x)=12x4ex2−x2ex2+∫2xex2dxF(x)=12x4ex2−x2ex2+ex2+CF(x)=(12x4−x2+1)ex2+C
Commented by cesarL last updated on 27/Jul/21
thankusir
Answered by Math_Freak last updated on 27/Jul/21
∫(x2)2xex2dxletu=x2dx=du2x∫u2xeu∙du2x12∫u2euduintegratingbyparts12(u2eu−2∫ueudu)12(u2eu−2(ueu−∫eudu))12(u2eu−2(ueu−eu))+Cu2eu2−ueu+eu+Cu=x2x4ex22−x2ex2+ex2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com