Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 148439 by liberty last updated on 28/Jul/21

  lim_(x→2)  (((√(x+2)) ((x+6))^(1/3) −x^2 )/(x−2)) =?

limx2x+2x+63x2x2=?

Answered by dumitrel last updated on 28/Jul/21

lim_(x→2) (((√(x+2))(((x+6))^(1/3) −2))/(x−2))+lim_(x→2) ((2((√(x+2))−2))/(x−2))−lim_(x→2) ((x^2 −4)/(x−2))=  lim_(x→2) (((√(x+2))(x−2))/((x−2)((((x+6)^2 ))^(1/3) +2((x+2))^(1/3) +4))+lim_(x→2) ((2(x−2))/((x−2)((√(x+2))+2)))+lim_(x→2) (((x−2)(x+2))/(x−2)))=  =(2/(4+4+4))+(2/(2+2))−4=−((10)/3)

limx2x+2(x+632)x2+limx22(x+22)x2limx2x24x2=limx2x+2(x2)(x2)((x+6)23+2x+23+4+limx22(x2)(x2)(x+2+2)+limx2(x2)(x+2)x2)==24+4+4+22+24=103

Answered by EDWIN88 last updated on 28/Jul/21

Answered by mathmax by abdo last updated on 28/Jul/21

f(x)=(((√(x+2))(x+6)^(1/3) −x^2 )/(x−2)) changement x−2=t give  f(x)=g(t)=(((√(t+4))(t+8)^(1/3) −(t+2)^2 )/t)  =(((√(t+4))(t+8)^(1/3) −t^2 −4t−4)/t)=((2(√(1+(t/4)))(^3 (√8)(1+(t/8))^(1/3) −t^2 −4t−4)/t)  ⇒g(t)∼((4(1+(t/8))(1+(t/(24)))−t^2 −4t−4)/t)  =((4(1+(t/(24))+(t/8)+(t^2 /(8.24)))−t^2 −4t−4)/t)  =(((t/6)+(t/2)+(t^2 /(48))−t^2 −4t)/t)=(1/6)+(1/2)−4+((t/(48))−t) ⇒  lim_(t→0) g(t)=(2/3)−4 =−((10)/3) ⇒lim_(x⌣2) f(x)=−((10)/3)

f(x)=x+2(x+6)13x2x2changementx2=tgivef(x)=g(t)=t+4(t+8)13(t+2)2t=t+4(t+8)13t24t4t=21+t4(38(1+t8)13t24t4tg(t)4(1+t8)(1+t24)t24t4t=4(1+t24+t8+t28.24)t24t4t=t6+t2+t248t24tt=16+124+(t48t)limt0g(t)=234=103limx2f(x)=103

Terms of Service

Privacy Policy

Contact: info@tinkutara.com