Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 148501 by mathmax by abdo last updated on 28/Jul/21

let U_n ={z∈C /z^n  =1}  simplify  Σ_(p=0) ^(2n−1)  w^p         with w∈U_n      and  Σ_(p=0) ^(2n−1) (2w +1)^p

$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\left\{\mathrm{z}\in\mathrm{C}\:/\mathrm{z}^{\mathrm{n}} \:=\mathrm{1}\right\}\:\:\mathrm{simplify} \\ $$$$\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \:\mathrm{w}^{\mathrm{p}} \:\:\:\:\:\:\:\:\mathrm{with}\:\mathrm{w}\in\mathrm{U}_{\mathrm{n}} \:\:\: \\ $$$$\mathrm{and}\:\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \left(\mathrm{2w}\:+\mathrm{1}\right)^{\mathrm{p}} \\ $$

Answered by Olaf_Thorendsen last updated on 28/Jul/21

• w = 1  S_n (1) = Σ_(p=0) ^(2n−1) 1^p  = 2n  (trivial)    • w^n  = 1 and w ≠ 1  S_n (w) = Σ_(p=0) ^(2n−1) w^p  =((1−w^(2n) )/(1−w))  = ((1−1)/(1−w))  = 0    T_n (w) = Σ_(p=0) ^(2n−1) (2w+1)^p   T_n (w) =((1−(2w+1)^(2n) )/(1−(2w+1)))  = (((2w+1)^(2n) −1)/(2w))

$$\bullet\:{w}\:=\:\mathrm{1} \\ $$$$\mathrm{S}_{{n}} \left(\mathrm{1}\right)\:=\:\underset{{p}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}\mathrm{1}^{{p}} \:=\:\mathrm{2}{n}\:\:\left(\mathrm{trivial}\right) \\ $$$$ \\ $$$$\bullet\:{w}^{{n}} \:=\:\mathrm{1}\:\mathrm{and}\:{w}\:\neq\:\mathrm{1} \\ $$$$\mathrm{S}_{{n}} \left({w}\right)\:=\:\underset{{p}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}{w}^{{p}} \:=\frac{\mathrm{1}−{w}^{\mathrm{2}{n}} }{\mathrm{1}−{w}}\:\:=\:\frac{\mathrm{1}−\mathrm{1}}{\mathrm{1}−{w}}\:\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{T}_{{n}} \left({w}\right)\:=\:\underset{{p}=\mathrm{0}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}\left(\mathrm{2}{w}+\mathrm{1}\right)^{{p}} \\ $$$$\mathrm{T}_{{n}} \left({w}\right)\:=\frac{\mathrm{1}−\left(\mathrm{2}{w}+\mathrm{1}\right)^{\mathrm{2}{n}} }{\mathrm{1}−\left(\mathrm{2}{w}+\mathrm{1}\right)}\:\:=\:\frac{\left(\mathrm{2}{w}+\mathrm{1}\right)^{\mathrm{2}{n}} −\mathrm{1}}{\mathrm{2}{w}} \\ $$

Answered by mathmax by abdo last updated on 28/Jul/21

if w=1   A_n =Σ_(p=0) ^(2n−1)  w^p  =2n  if w≠1   Σ_(p=0) ^(2n−1)  w^p  =((1−w^(2n) )/(1−w))=((1−(w^n )^2 )/(1−w))=((1−1)/(1−w))=0  alsoB_n = Σ_(p=0) ^(2n−1)  (2w+1)^p   the roots of z^n  =1 are z_k =e^(i((2kπ)/n))   and 0≤k≤n−1 ⇒w≠−(1/2) ⇒B_n =((1−(2w+1)^(2n) )/(1−(2w+1)))  =(1/(2w)){(2w+1)^(2n) −1}  =(1/(2w)){Σ_(k=0) ^(2n) C_(2n) ^k  (2w)^k −1}  =(1/(2w))Σ_(k=0) ^(2n)  C_(2n) ^k  2^k  w^k

$$\mathrm{if}\:\mathrm{w}=\mathrm{1}\:\:\:\mathrm{A}_{\mathrm{n}} =\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \:\mathrm{w}^{\mathrm{p}} \:=\mathrm{2n} \\ $$$$\mathrm{if}\:\mathrm{w}\neq\mathrm{1}\:\:\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \:\mathrm{w}^{\mathrm{p}} \:=\frac{\mathrm{1}−\mathrm{w}^{\mathrm{2n}} }{\mathrm{1}−\mathrm{w}}=\frac{\mathrm{1}−\left(\mathrm{w}^{\mathrm{n}} \right)^{\mathrm{2}} }{\mathrm{1}−\mathrm{w}}=\frac{\mathrm{1}−\mathrm{1}}{\mathrm{1}−\mathrm{w}}=\mathrm{0} \\ $$$$\mathrm{alsoB}_{\mathrm{n}} =\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \:\left(\mathrm{2w}+\mathrm{1}\right)^{\mathrm{p}} \:\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{z}^{\mathrm{n}} \:=\mathrm{1}\:\mathrm{are}\:\mathrm{z}_{\mathrm{k}} =\mathrm{e}^{\mathrm{i}\frac{\mathrm{2k}\pi}{\mathrm{n}}} \\ $$$$\mathrm{and}\:\mathrm{0}\leqslant\mathrm{k}\leqslant\mathrm{n}−\mathrm{1}\:\Rightarrow\mathrm{w}\neq−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{B}_{\mathrm{n}} =\frac{\mathrm{1}−\left(\mathrm{2w}+\mathrm{1}\right)^{\mathrm{2n}} }{\mathrm{1}−\left(\mathrm{2w}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2w}}\left\{\left(\mathrm{2w}+\mathrm{1}\right)^{\mathrm{2n}} −\mathrm{1}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2w}}\left\{\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{2n}} \mathrm{C}_{\mathrm{2n}} ^{\mathrm{k}} \:\left(\mathrm{2w}\right)^{\mathrm{k}} −\mathrm{1}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2w}}\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{2n}} \:\mathrm{C}_{\mathrm{2n}} ^{\mathrm{k}} \:\mathrm{2}^{\mathrm{k}} \:\mathrm{w}^{\mathrm{k}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com