Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 148543 by liberty last updated on 29/Jul/21

Answered by Rasheed.Sindhi last updated on 30/Jul/21

Let ∠B=α , ∠C=β ,  △ABC:          AC^2 =AB^2 +BC^2 −2.AB.BC.cos α          AC^2 =8^2 +10^2 −2.8.10.cos α             =164−160cos α    △BCD:         BD^2 =10^2 +12^2 −2.10.12cos β                 =244−240cos β           AC^2 +CD^2 =AD^2 =(2R)^2         AB^2 +BD^2 =AD^2 =(2R)^2   Continue

$${Let}\:\angle\mathrm{B}=\alpha\:,\:\angle\mathrm{C}=\beta\:, \\ $$$$\bigtriangleup\mathrm{ABC}: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{AC}^{\mathrm{2}} =\mathrm{AB}^{\mathrm{2}} +\mathrm{BC}^{\mathrm{2}} −\mathrm{2}.\mathrm{AB}.\mathrm{BC}.\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\mathrm{AC}^{\mathrm{2}} =\mathrm{8}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{2}.\mathrm{8}.\mathrm{10}.\mathrm{cos}\:\alpha \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{164}−\mathrm{160cos}\:\alpha\:\: \\ $$$$\bigtriangleup\mathrm{BCD}: \\ $$$$\:\:\:\:\:\:\:\mathrm{BD}^{\mathrm{2}} =\mathrm{10}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} −\mathrm{2}.\mathrm{10}.\mathrm{12cos}\:\beta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{244}−\mathrm{240cos}\:\beta \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{AC}^{\mathrm{2}} +\mathrm{CD}^{\mathrm{2}} =\mathrm{AD}^{\mathrm{2}} =\left(\mathrm{2R}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{AB}^{\mathrm{2}} +\mathrm{BD}^{\mathrm{2}} =\mathrm{AD}^{\mathrm{2}} =\left(\mathrm{2R}\right)^{\mathrm{2}} \\ $$$${Continue} \\ $$

Answered by mnjuly1970 last updated on 29/Jul/21

AC^( 2) =164−160cos(B)     AC^( 2) =4R^( 2) −144       164−160cos(B)=4R^( 2) −144        308−4R^( 2) =160cos(B)        308−4R^( 2) =160(−cos(D))       4R^( 2) −308=160.((12)/(2R))=((960)/R)         R^( 3) −77R−240=0

$${AC}^{\:\mathrm{2}} =\mathrm{164}−\mathrm{160}{cos}\left({B}\right) \\ $$$$\:\:\:{AC}^{\:\mathrm{2}} =\mathrm{4}{R}^{\:\mathrm{2}} −\mathrm{144} \\ $$$$\:\:\:\:\:\mathrm{164}−\mathrm{160}{cos}\left({B}\right)=\mathrm{4}{R}^{\:\mathrm{2}} −\mathrm{144} \\ $$$$\:\:\:\:\:\:\mathrm{308}−\mathrm{4}{R}^{\:\mathrm{2}} =\mathrm{160}{cos}\left({B}\right) \\ $$$$\:\:\:\:\:\:\mathrm{308}−\mathrm{4}{R}^{\:\mathrm{2}} =\mathrm{160}\left(−{cos}\left({D}\right)\right) \\ $$$$\:\:\:\:\:\mathrm{4}{R}^{\:\mathrm{2}} −\mathrm{308}=\mathrm{160}.\frac{\mathrm{12}}{\mathrm{2}{R}}=\frac{\mathrm{960}}{{R}} \\ $$$$\:\:\:\:\:\:\:{R}^{\:\mathrm{3}} −\mathrm{77}{R}−\mathrm{240}=\mathrm{0} \\ $$$$ \\ $$$$\: \\ $$$$\:\:\: \\ $$$$\:\:\: \\ $$$$ \\ $$$$\:\:\: \\ $$

Answered by mr W last updated on 29/Jul/21

sin^(−1) (4/R)+sin^(−1) (5/R)+sin^(−1) (6/R)=(π/2)  cos (sin^(−1) (4/R)+sin^(−1) (5/R))=cos ((π/2)−sin^(−1) (6/R))  (√((1−((16)/R^2 ))(1−((25)/R^2 ))))−(4/R)×(5/R)=(6/R)  (1−((16)/R^2 ))(1−((25)/R^2 ))=(((20)/R^2 )+(6/R))^2   1=((77)/R^2 )+((240)/R^3 )  R^3 −77R−240=0  R=2(√((77)/3)) sin (((2π)/3)−(1/3)sin^(−1) ((120×3(√3))/(77(√(77)))))  ≈10.045

$$\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{{R}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{{R}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{6}}{{R}}=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\left(\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{4}}{{R}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{5}}{{R}}\right)=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{6}}{{R}}\right) \\ $$$$\sqrt{\left(\mathrm{1}−\frac{\mathrm{16}}{{R}^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{\mathrm{25}}{{R}^{\mathrm{2}} }\right)}−\frac{\mathrm{4}}{{R}}×\frac{\mathrm{5}}{{R}}=\frac{\mathrm{6}}{{R}} \\ $$$$\left(\mathrm{1}−\frac{\mathrm{16}}{{R}^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{\mathrm{25}}{{R}^{\mathrm{2}} }\right)=\left(\frac{\mathrm{20}}{{R}^{\mathrm{2}} }+\frac{\mathrm{6}}{{R}}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}=\frac{\mathrm{77}}{{R}^{\mathrm{2}} }+\frac{\mathrm{240}}{{R}^{\mathrm{3}} } \\ $$$${R}^{\mathrm{3}} −\mathrm{77}{R}−\mathrm{240}=\mathrm{0} \\ $$$${R}=\mathrm{2}\sqrt{\frac{\mathrm{77}}{\mathrm{3}}}\:\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{120}×\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{77}\sqrt{\mathrm{77}}}\right) \\ $$$$\approx\mathrm{10}.\mathrm{045} \\ $$

Commented by liberty last updated on 30/Jul/21

great

$$\mathrm{great} \\ $$

Answered by mr W last updated on 29/Jul/21

an other way:  AC=(√(4R^2 −12^2 ))  BD=(√(4R^2 −8^2 ))  ABCD is cyclic, therefore  AC×BD=AB×CD+BC×AD  ⇒(4R^2 −12^2 )(4R^2 −8^2 )=(8×12+20R)^2   ⇒R^3 −77R−240=0  ......

$${an}\:{other}\:{way}: \\ $$$${AC}=\sqrt{\mathrm{4}{R}^{\mathrm{2}} −\mathrm{12}^{\mathrm{2}} } \\ $$$${BD}=\sqrt{\mathrm{4}{R}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} } \\ $$$${ABCD}\:{is}\:{cyclic},\:{therefore} \\ $$$${AC}×{BD}={AB}×{CD}+{BC}×{AD} \\ $$$$\Rightarrow\left(\mathrm{4}{R}^{\mathrm{2}} −\mathrm{12}^{\mathrm{2}} \right)\left(\mathrm{4}{R}^{\mathrm{2}} −\mathrm{8}^{\mathrm{2}} \right)=\left(\mathrm{8}×\mathrm{12}+\mathrm{20}{R}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{R}^{\mathrm{3}} −\mathrm{77}{R}−\mathrm{240}=\mathrm{0} \\ $$$$...... \\ $$

Commented by Tawa11 last updated on 03/Aug/21

Great

$$\mathrm{Great} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com