Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 148543 by liberty last updated on 29/Jul/21

Answered by Rasheed.Sindhi last updated on 30/Jul/21

Let ∠B=α , ∠C=β ,  △ABC:          AC^2 =AB^2 +BC^2 −2.AB.BC.cos α          AC^2 =8^2 +10^2 −2.8.10.cos α             =164−160cos α    △BCD:         BD^2 =10^2 +12^2 −2.10.12cos β                 =244−240cos β           AC^2 +CD^2 =AD^2 =(2R)^2         AB^2 +BD^2 =AD^2 =(2R)^2   Continue

LetB=α,C=β,ABC:AC2=AB2+BC22.AB.BC.cosαAC2=82+1022.8.10.cosα=164160cosαBCD:BD2=102+1222.10.12cosβ=244240cosβAC2+CD2=AD2=(2R)2AB2+BD2=AD2=(2R)2Continue

Answered by mnjuly1970 last updated on 29/Jul/21

AC^( 2) =164−160cos(B)     AC^( 2) =4R^( 2) −144       164−160cos(B)=4R^( 2) −144        308−4R^( 2) =160cos(B)        308−4R^( 2) =160(−cos(D))       4R^( 2) −308=160.((12)/(2R))=((960)/R)         R^( 3) −77R−240=0

AC2=164160cos(B)AC2=4R2144164160cos(B)=4R21443084R2=160cos(B)3084R2=160(cos(D))4R2308=160.122R=960RR377R240=0

Answered by mr W last updated on 29/Jul/21

sin^(−1) (4/R)+sin^(−1) (5/R)+sin^(−1) (6/R)=(π/2)  cos (sin^(−1) (4/R)+sin^(−1) (5/R))=cos ((π/2)−sin^(−1) (6/R))  (√((1−((16)/R^2 ))(1−((25)/R^2 ))))−(4/R)×(5/R)=(6/R)  (1−((16)/R^2 ))(1−((25)/R^2 ))=(((20)/R^2 )+(6/R))^2   1=((77)/R^2 )+((240)/R^3 )  R^3 −77R−240=0  R=2(√((77)/3)) sin (((2π)/3)−(1/3)sin^(−1) ((120×3(√3))/(77(√(77)))))  ≈10.045

sin14R+sin15R+sin16R=π2cos(sin14R+sin15R)=cos(π2sin16R)(116R2)(125R2)4R×5R=6R(116R2)(125R2)=(20R2+6R)21=77R2+240R3R377R240=0R=2773sin(2π313sin1120×337777)10.045

Commented by liberty last updated on 30/Jul/21

great

great

Answered by mr W last updated on 29/Jul/21

an other way:  AC=(√(4R^2 −12^2 ))  BD=(√(4R^2 −8^2 ))  ABCD is cyclic, therefore  AC×BD=AB×CD+BC×AD  ⇒(4R^2 −12^2 )(4R^2 −8^2 )=(8×12+20R)^2   ⇒R^3 −77R−240=0  ......

anotherway:AC=4R2122BD=4R282ABCDiscyclic,thereforeAC×BD=AB×CD+BC×AD(4R2122)(4R282)=(8×12+20R)2R377R240=0......

Commented by Tawa11 last updated on 03/Aug/21

Great

Great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com