All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 148565 by mathmax by abdo last updated on 29/Jul/21
calculate∫−∞+∞x2dx(x2−x+1)(x2+x+1)
Answered by Ar Brandon last updated on 29/Jul/21
Υ=∫−∞+∞x2dx(x2−x+1)(x2+x+1)=2∫0∞x2dx(x2−x+1)(x2+x+1)=2∫01x2dx(x2−x+1)(x2+x+1)+2∫1∞x2dx(x2−x+1)(x2+x+1)=2∫01x2dx(x2−x+1)(x2+x+1)+2∫01dx(x2−x+1)(x2+x+1)=2∫01x2+1(x2−x+1)(x2+x+1)dx=2∫01x2+1x4+x2+1dx=2∫011+1x2x2+1+1x2dx=2∫011+1x2(x−1x)2+3dx=2∫01d(x−1x)(x−1x)2+3=23[arctan(x2−13x)]01=π3
Answered by mathmax by abdo last updated on 29/Jul/21
Ψ=∫−∞+∞x2(x2−x+1)(x2+x+1)dxletΛ(z)=z2(z2−z+1)(z2+z+1)polesofΛ?z2−z+1=0→Δ=−3⇒z1=1+i32=eiπ3andz2=1−i32=e−iπ3z2+z+1=0→Δ=−3⇒x1=−1+i32=e2iπ3⇒x2=e−2iπ3⇒Λ(z)=z2(z−eiπ3)(z−e−iπ3)(z−e2iπ3)(z−e−2iπ3)∫−∞+∞Λ(z)dz=2iπ{Res(Λ,eiπ3)+Res(Λ,e2iπ3)}Res(Λ,eiπ3)=e2iπ32isin(π3)×(eiπ3−1)eiπ−1=1−4i×32(−1−e2iπ3)=1+e2iπ32i3Res(Λ,e2iπ3)=e4iπ32isin(2π3)×e2iπ3+12=1+e4iπ34i×32=1+e4iπ32i3⇒∫−∞+∞Λ(z)dz=2iπ2i3{1+e2iπ3+1−eiπ3}=π3{2−12+i32−12−i32}=π3⇒Ψ=π3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com