Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 148570 by mathmax by abdo last updated on 29/Jul/21

calculate ∫_0 ^∞  ((logx)/(x^2  +x+1))dx

calculate0logxx2+x+1dx

Answered by Ar Brandon last updated on 29/Jul/21

Φ=∫_0 ^∞ ((logx)/(x^2 +x+1))dx      =∫_0 ^1 ((logx)/(x^2 +x+1))dx+∫_1 ^∞ ((logx)/(x^2 +x+1))dx      =∫_0 ^1 ((logx)/(x^2 +x+1))dx−∫_0 ^1 ((logx)/(x^2 +x+1))dx=0

Φ=0logxx2+x+1dx=01logxx2+x+1dx+1logxx2+x+1dx=01logxx2+x+1dx01logxx2+x+1dx=0

Answered by mathmax by abdo last updated on 29/Jul/21

∫_0 ^∞   ((logx)/(x^2  +x+1))dx =−(1/2)Re(Σ Res(f(z)log^2 z ,a_i )  f(z)=(1/(z^2  +z+1))  poles of f!  Δ=1−4=−3 ⇒z_1 =((−1+i(√3))/2) =e^((2iπ)/3)   and z_2 =((−1−i(√3))/2)  ϕ(z)=f(z)log^2 z ⇒ϕ(z)=((log^2 z)/((z−z_1 )(z−z_2 )))  Res(ϕ,e^((2iπ)/3) ) =(((((2iπ)/3))^2 )/(i(√3))) =−((4π^2 )/(9(i(√3)))) =((4iπ^2 )/(9(√3)))  Res(ϕ,e^(−((2iπ)/3)) )=(((−((2iπ)/3))^2 )/(−i(√3)))=((4π^2 )/(9(i(√3))))=((−4iπ^2 )/(9(√3))) ⇒  Σ Res(ϕ..)=0 ⇒∫_0 ^∞  ((logx)/(x^2  +x+1))dx=0

0logxx2+x+1dx=12Re(ΣRes(f(z)log2z,ai)f(z)=1z2+z+1polesoff!Δ=14=3z1=1+i32=e2iπ3andz2=1i32φ(z)=f(z)log2zφ(z)=log2z(zz1)(zz2)Res(φ,e2iπ3)=(2iπ3)2i3=4π29(i3)=4iπ293Res(φ,e2iπ3)=(2iπ3)2i3=4π29(i3)=4iπ293ΣRes(φ..)=00logxx2+x+1dx=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com