Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 148594 by mathdanisur last updated on 29/Jul/21

Solve for equation:  x^2 +y^2 +z^2  = xy+xz+yz   ⇒  x;y;z=?

$${Solve}\:{for}\:{equation}: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\:{xy}+{xz}+{yz}\:\:\:\Rightarrow\:\:{x};{y};{z}=? \\ $$

Commented by Rasheed.Sindhi last updated on 29/Jul/21

One general solution:  x=y=z ∀ x,y,z∈R

$${One}\:{general}\:{solution}: \\ $$$${x}={y}={z}\:\forall\:{x},{y},{z}\in\mathbb{R} \\ $$

Commented by mathdanisur last updated on 29/Jul/21

Thankyou Ser, if possible solution

$${Thankyou}\:{Ser},\:{if}\:{possible}\:{solution} \\ $$

Answered by ajfour last updated on 29/Jul/21

3(x^2 +y^2 +z^2 )=(x+y+z)^2   3((x^2 /z^2 )+(y^2 /z^2 )+1)=((x/z)+(y/z)+1)^2   3(p^2 +q^2 +1)=(p+q+1)^2   3{(p+q)^2 +1−2pq}               =(p+q)^2 +2(p+q)+1  ⇒   2(p+q)^2 −2(p+q)−6pq+2=0  say  p+q=s ; m=pq  2s^2 −2s−6m+2=0  m=((2s^2 −2s+2)/6)   ...(i)  we choose any s  find m  from (i)  next  p, q=((s±(√(s^2 −4m)))/2)  choose any z≠0  x=pz  ,  y=qz .

$$\mathrm{3}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)=\left({x}+{y}+{z}\right)^{\mathrm{2}} \\ $$$$\mathrm{3}\left(\frac{{x}^{\mathrm{2}} }{{z}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{z}^{\mathrm{2}} }+\mathrm{1}\right)=\left(\frac{{x}}{{z}}+\frac{{y}}{{z}}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{3}\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +\mathrm{1}\right)=\left({p}+{q}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{3}\left\{\left({p}+{q}\right)^{\mathrm{2}} +\mathrm{1}−\mathrm{2}{pq}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({p}+{q}\right)^{\mathrm{2}} +\mathrm{2}\left({p}+{q}\right)+\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\:\mathrm{2}\left({p}+{q}\right)^{\mathrm{2}} −\mathrm{2}\left({p}+{q}\right)−\mathrm{6}{pq}+\mathrm{2}=\mathrm{0} \\ $$$${say}\:\:{p}+{q}={s}\:;\:{m}={pq} \\ $$$$\mathrm{2}{s}^{\mathrm{2}} −\mathrm{2}{s}−\mathrm{6}{m}+\mathrm{2}=\mathrm{0} \\ $$$${m}=\frac{\mathrm{2}{s}^{\mathrm{2}} −\mathrm{2}{s}+\mathrm{2}}{\mathrm{6}}\:\:\:...\left({i}\right) \\ $$$${we}\:{choose}\:{any}\:{s} \\ $$$${find}\:{m}\:\:{from}\:\left({i}\right) \\ $$$${next}\:\:{p},\:{q}=\frac{{s}\pm\sqrt{{s}^{\mathrm{2}} −\mathrm{4}{m}}}{\mathrm{2}} \\ $$$${choose}\:{any}\:{z}\neq\mathrm{0} \\ $$$${x}={pz}\:\:,\:\:{y}={qz}\:. \\ $$$$ \\ $$

Commented by mathdanisur last updated on 29/Jul/21

Thank you Ser, answer: x=y=z

$${Thank}\:{you}\:{Ser},\:{answer}:\:{x}={y}={z} \\ $$

Answered by Rasheed.Sindhi last updated on 29/Jul/21

Assumed x,y,z∈R  x^2 +y^2 +z^2 =xy+yz+zx  x^2 −(y+z)x+y^2 −yz+z^2 =0  x=(((y+z)±(√((y+z)^2 −4(y^2 −yz+z^2 ))))/2)  x=(((y+z)±(√(y^2 +2yz+z^2 −4y^2 +4yz−4z^2 )))/2)  x=(((y+z)±(√(−3y^2 +6yz−3z^2 )))/2)  x=(((y+z)±(√(−3(y^2 −2yz+z^2 ))))/2)  x=(((y+z)±(√(−3(y−z)^2 )))/2)  Since x∈R , (y−z)^2 =0       [(y−z)^2 >0⇒x∉R           (y−z)^2 ≮0   ∵ y,z∈R                ∴ (y−z)^2 =0 ]      or   y=z...........(i)  x=((y+y)/2)=((2y)/2)=y.........(ii)  From (i) & (ii):       x=y=z

$${Assumed}\:{x},{y},{z}\in\mathbb{R} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={xy}+{yz}+{zx} \\ $$$${x}^{\mathrm{2}} −\left({y}+{z}\right){x}+{y}^{\mathrm{2}} −{yz}+{z}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}=\frac{\left({y}+{z}\right)\pm\sqrt{\left({y}+{z}\right)^{\mathrm{2}} −\mathrm{4}\left({y}^{\mathrm{2}} −{yz}+{z}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$${x}=\frac{\left({y}+{z}\right)\pm\sqrt{{y}^{\mathrm{2}} +\mathrm{2}{yz}+{z}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{yz}−\mathrm{4}{z}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${x}=\frac{\left({y}+{z}\right)\pm\sqrt{−\mathrm{3}{y}^{\mathrm{2}} +\mathrm{6}{yz}−\mathrm{3}{z}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${x}=\frac{\left({y}+{z}\right)\pm\sqrt{−\mathrm{3}\left({y}^{\mathrm{2}} −\mathrm{2}{yz}+{z}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$${x}=\frac{\left({y}+{z}\right)\pm\sqrt{−\mathrm{3}\left({y}−{z}\right)^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${Since}\:{x}\in\mathbb{R}\:,\:\left({y}−{z}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\left[\left({y}−{z}\right)^{\mathrm{2}} >\mathrm{0}\Rightarrow{x}\notin\mathbb{R}\right. \\ $$$$\:\:\:\:\:\:\:\:\:\left({y}−{z}\right)^{\mathrm{2}} \nless\mathrm{0}\:\:\:\because\:{y},{z}\in\mathbb{R} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\left({y}−{z}\right)^{\mathrm{2}} =\mathrm{0}\:\right] \\ $$$$\:\:\:\:{or}\:\:\:{y}={z}...........\left({i}\right) \\ $$$${x}=\frac{{y}+{y}}{\mathrm{2}}=\frac{\mathrm{2}{y}}{\mathrm{2}}={y}.........\left({ii}\right) \\ $$$${From}\:\left({i}\right)\:\&\:\left({ii}\right): \\ $$$$\:\:\:\:\:{x}={y}={z} \\ $$

Commented by mathdanisur last updated on 30/Jul/21

Thank You Ser

$${Thank}\:{You}\:{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com