Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 148707 by mathdanisur last updated on 30/Jul/21

Solve for equation:  2tg(3x) - 3tg(2x) = tg^2 (2x) ∙ tg(3x)

$${Solve}\:{for}\:{equation}: \\ $$$$\mathrm{2}{tg}\left(\mathrm{3}{x}\right)\:-\:\mathrm{3}{tg}\left(\mathrm{2}{x}\right)\:=\:{tg}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\:\centerdot\:{tg}\left(\mathrm{3}{x}\right) \\ $$

Answered by nimnim last updated on 30/Jul/21

Let me give a try....  ⇒2(((3tanx−tan^3 x)/(1−3tan^2 x)))−3(((2tanx)/(1−tan^2 x)))=(((2tanx)/(1−tan^2 x)))^2 (((3tanx−tan^3 x)/(1−3tan^2 x)))  ⇒((6tanx−6tan^3 x−2tan^3 x+2tan^5 x−6tanx+18tan^3 x)/((1−3tan^2 x)(1−tan^2 x)))=((4tan^2 x(3tanx−tan^3 x))/((1−tan^2 x)^2 (1−3tan^2 )))  ⇒((2tan^5 x+10tan^3 x)/1)=((4tan^3 x(3−tan^2 x))/(1−tan^2 x))  ⇒2tan^3 x(tan^2 x+5)(1−tan^2 x)−4tan^3 x(3−tan^2 x)=0  ⇒2tan^3 =0 or (tan^2 x+5)(1−tan^2 x)−6+2tan^2 x=0  ⇒tanx=0 or tan^2 x−tan^4 x+5−5tan^2 x−6+2tan^2 x=0  ⇒x=nπ, n∈Z   or    tan^4 x+2tan^2 x+1=0                                      or    (tan^2 x+1)^2 =0                                      or     tan^2 x+1=0                                      or     sec^2 x=0                                      or     secx=0  but the range of secx is (−∞,−1]∪[1,∞) and  zero does not fall within the range.           ∴ there is no solution.  Hence the only solution is x=nπ, n∈Z

$${Let}\:{me}\:{give}\:{a}\:{try}.... \\ $$$$\Rightarrow\mathrm{2}\left(\frac{\mathrm{3}{tanx}−{tan}^{\mathrm{3}} {x}}{\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}}\right)−\mathrm{3}\left(\frac{\mathrm{2}{tanx}}{\mathrm{1}−{tan}^{\mathrm{2}} {x}}\right)=\left(\frac{\mathrm{2}{tanx}}{\mathrm{1}−{tan}^{\mathrm{2}} {x}}\right)^{\mathrm{2}} \left(\frac{\mathrm{3}{tanx}−{tan}^{\mathrm{3}} {x}}{\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}}\right) \\ $$$$\Rightarrow\frac{\mathrm{6}{tanx}−\mathrm{6}{tan}^{\mathrm{3}} {x}−\mathrm{2}{tan}^{\mathrm{3}} {x}+\mathrm{2}{tan}^{\mathrm{5}} {x}−\mathrm{6}{tanx}+\mathrm{18}{tan}^{\mathrm{3}} {x}}{\left(\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\right)\left(\mathrm{1}−{tan}^{\mathrm{2}} {x}\right)}=\frac{\mathrm{4}{tan}^{\mathrm{2}} {x}\left(\mathrm{3}{tanx}−{tan}^{\mathrm{3}} {x}\right)}{\left(\mathrm{1}−{tan}^{\mathrm{2}} {x}\right)^{\mathrm{2}} \left(\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\frac{\mathrm{2}{tan}^{\mathrm{5}} {x}+\mathrm{10}{tan}^{\mathrm{3}} {x}}{\mathrm{1}}=\frac{\mathrm{4}{tan}^{\mathrm{3}} {x}\left(\mathrm{3}−{tan}^{\mathrm{2}} {x}\right)}{\mathrm{1}−{tan}^{\mathrm{2}} {x}} \\ $$$$\Rightarrow\mathrm{2}{tan}^{\mathrm{3}} {x}\left({tan}^{\mathrm{2}} {x}+\mathrm{5}\right)\left(\mathrm{1}−{tan}^{\mathrm{2}} {x}\right)−\mathrm{4}{tan}^{\mathrm{3}} {x}\left(\mathrm{3}−{tan}^{\mathrm{2}} {x}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}{tan}^{\mathrm{3}} =\mathrm{0}\:{or}\:\left({tan}^{\mathrm{2}} {x}+\mathrm{5}\right)\left(\mathrm{1}−{tan}^{\mathrm{2}} {x}\right)−\mathrm{6}+\mathrm{2}{tan}^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\Rightarrow{tanx}=\mathrm{0}\:{or}\:{tan}^{\mathrm{2}} {x}−{tan}^{\mathrm{4}} {x}+\mathrm{5}−\mathrm{5}{tan}^{\mathrm{2}} {x}−\mathrm{6}+\mathrm{2}{tan}^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\Rightarrow{x}={n}\pi,\:{n}\in\mathbb{Z}\:\:\:{or}\:\:\:\:{tan}^{\mathrm{4}} {x}+\mathrm{2}{tan}^{\mathrm{2}} {x}+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:\:\:\:\left({tan}^{\mathrm{2}} {x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:\:\:\:\:{tan}^{\mathrm{2}} {x}+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:\:\:\:\:{sec}^{\mathrm{2}} {x}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{or}\:\:\:\:\:{secx}=\mathrm{0} \\ $$$${but}\:{the}\:{range}\:{of}\:{secx}\:{is}\:\left(−\infty,−\mathrm{1}\right]\cup\left[\mathrm{1},\infty\right)\:{and} \\ $$$${zero}\:{does}\:{not}\:{fall}\:{within}\:{the}\:{range}. \\ $$$$\:\:\:\:\:\:\:\:\:\therefore\:{there}\:{is}\:{no}\:{solution}. \\ $$$${Hence}\:{the}\:{only}\:{solution}\:{is}\:{x}={n}\pi,\:{n}\in\mathbb{Z} \\ $$

Commented by mathdanisur last updated on 30/Jul/21

Thank you Ser

$${Thank}\:{you}\:{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com