All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 148780 by Jonathanwaweh last updated on 31/Jul/21
Answered by Kamel last updated on 31/Jul/21
Ω=∏+∞n=2e(1−1n2)n2=e∑+∞n=2(n2Ln(1−1n2)+1)=e∑+∞n=2n2(−∑+∞p=11p1n2p+1n2)=e−∑+∞p=11p+1∑+∞n=21n2p=e−∑+∞p=11p+1(ζ(2p)−1)Wehave:∑+∞k=0ζ(2k)x2k=−πx2cot(πx)So∑+∞k=0(ζ(2k)−1)x2k+1=−πx22cot(πx)−x1−x2∴∑+∞p=0ζ(2p)−1p+1=−∫01(πx2cot(πx)+2x1−x2)dx∫(x2cot(πx)+2x1−x2)dx=ixLi2(e−2πix)π2+Li3(e−2πix)2π3−ix3π+x2Ln(1−e2πix)−πLn(1−x2)π∴∫01(πx2cot(πx)+2x1−x2)dx=Ln(π)So:∑+∞p=1ζ(2p)−1p+1=32−Ln(π)Then:∏+∞en=2(1−1n2)n2=eLn(π)−32=πeeKAMELBENAICHA
Commented by Tawa11 last updated on 02/Aug/21
Weldonesir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com