Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 148798 by abdurehime last updated on 31/Jul/21

Answered by puissant last updated on 31/Jul/21

=((√2)/2)(∫((sin(x))/( (√(sin(x)cos(x)))))dx+∫((cos(x))/( (√(sin(x)cos(x)))))dx)  =((√2)/2)∫(√((sin(x))/(cos(x))))dx+((√2)/2)∫(√((cos(x))/(sin(x))))dx  =((√2)/2)∫((√(tan(x)))+(√(cotan(x))))dx  =((√2)/2)∫((√(tan(x)))+(1/( (√(tan(x))))))dx  =((√2)/2)∫((1+tan(x))/( (√(tan(x)))))dx  posons t=(√(tan(x))) ⇒ dt=((1+tan^2 (x))/(2(√(tan(x)))))dx  ⇒ dx=((2(√(tan(x))))/(1+tan^2 (x)))dt  ⇒ dx=((2t)/(1+t^4 ))dt  I=((√2)/2)∫((1+t^2 )/t)×((2t)/(1+t^4 ))dt  =(√2)∫((1+t^2 )/(1+t^4 ))dt = (√2)∫((1+(1/t^2 ))/(t^2 +(1/t^2 )))dt  =(√2)∫((1+(1/t^2 ))/((t−(1/t))^2 +2))dt  posons  u=(t−(1/t)) ⇒ du=(1+(1/t^2 ))dt  ⇒I=(√2)∫(du/(u^2 +((√2))^2 ))  =((√2)/( (√2)))arctan(u/( (√2))) +C  =arctan(((t−(1/t))/( (√2))))+C  =arctan((((√(tan(x)))−(1/( (√(tan(x))))))/( (√2))))+C  soit I= arctan(((tan(x)−1)/( (√(2tan(x))))))+C..  d′ou I=arctan(((sin(x)−cos(x))/( (√(sin(2x))))))+C          ......Le puissant....

=22(sin(x)sin(x)cos(x)dx+cos(x)sin(x)cos(x)dx)=22sin(x)cos(x)dx+22cos(x)sin(x)dx=22(tan(x)+cotan(x))dx=22(tan(x)+1tan(x))dx=221+tan(x)tan(x)dxposonst=tan(x)dt=1+tan2(x)2tan(x)dxdx=2tan(x)1+tan2(x)dtdx=2t1+t4dtI=221+t2t×2t1+t4dt=21+t21+t4dt=21+1t2t2+1t2dt=21+1t2(t1t)2+2dtposonsu=(t1t)du=(1+1t2)dtI=2duu2+(2)2=22arctanu2+C=arctan(t1t2)+C=arctan(tan(x)1tan(x)2)+CsoitI=arctan(tan(x)12tan(x))+C..douI=arctan(sin(x)cos(x)sin(2x))+C......Lepuissant....

Commented by abdurehime last updated on 31/Jul/21

show me the final answer step by step

showmethefinalanswerstepbystep

Answered by Kamel last updated on 31/Jul/21

I=∫((sin(x)+cos(x))/( (√(sin(2x)))))dx=^(t=(√(tg(x)))) (√2)∫((1+t^2 )/(1+t^4 ))dt    =(√2)∫((1+(1/t^2 ))/((t−(1/t))^2 +2))dt=^(t−(1/t)=u) (√2)∫(du/(2+u^2 ))=Arctg((1/( (√2)))((√(tg(x)))−(1/( (√(tg(x)))))))+c/c∈R   ∴∫((sin(x)+cos(x))/( (√(sin(2x)))))dx=Arctg(((sin(x)−cos(x))/( (√(sin(2x))))))+c/c∈R.

I=sin(x)+cos(x)sin(2x)dx=t=tg(x)21+t21+t4dt=21+1t2(t1t)2+2dt=t1t=u2du2+u2=Arctg(12(tg(x)1tg(x)))+c/cRsin(x)+cos(x)sin(2x)dx=Arctg(sin(x)cos(x)sin(2x))+c/cR.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com