All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 148798 by abdurehime last updated on 31/Jul/21
Answered by puissant last updated on 31/Jul/21
=22(∫sin(x)sin(x)cos(x)dx+∫cos(x)sin(x)cos(x)dx)=22∫sin(x)cos(x)dx+22∫cos(x)sin(x)dx=22∫(tan(x)+cotan(x))dx=22∫(tan(x)+1tan(x))dx=22∫1+tan(x)tan(x)dxposonst=tan(x)⇒dt=1+tan2(x)2tan(x)dx⇒dx=2tan(x)1+tan2(x)dt⇒dx=2t1+t4dtI=22∫1+t2t×2t1+t4dt=2∫1+t21+t4dt=2∫1+1t2t2+1t2dt=2∫1+1t2(t−1t)2+2dtposonsu=(t−1t)⇒du=(1+1t2)dt⇒I=2∫duu2+(2)2=22arctanu2+C=arctan(t−1t2)+C=arctan(tan(x)−1tan(x)2)+CsoitI=arctan(tan(x)−12tan(x))+C..d′ouI=arctan(sin(x)−cos(x)sin(2x))+C......Lepuissant....
Commented by abdurehime last updated on 31/Jul/21
showmethefinalanswerstepbystep
Answered by Kamel last updated on 31/Jul/21
I=∫sin(x)+cos(x)sin(2x)dx=t=tg(x)2∫1+t21+t4dt=2∫1+1t2(t−1t)2+2dt=t−1t=u2∫du2+u2=Arctg(12(tg(x)−1tg(x)))+c/c∈R∴∫sin(x)+cos(x)sin(2x)dx=Arctg(sin(x)−cos(x)sin(2x))+c/c∈R.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com