All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 148849 by EDWIN88 last updated on 31/Jul/21
limx→0+x3−cosxsin2xx2=?
Answered by iloveisrael last updated on 01/Aug/21
limx→0+x3−sin3x+sin3x−cosxsin2xx2=limx→0+x3−sin3xx2+limx→0+sin2x(sinx−cosx)x2=limx→0+(x−sinx)(x2+xsinx+sin2x)x2+limx→0+(sinx−cosx)=limx→0+(x−sinxx3).x3(x2+xsinx+sin2x)x2−1=limx→016x3(x2+xsinx+sin2x)x2−1=16[limx→0+(x(x2+xsinx+sin2x)]−1=−1.
Answered by mathmax by abdo last updated on 01/Aug/21
limx→0+x3−cos(x)sin2xx2=limx→0x−cos(x)(sinxx)2=0−cos(0)×(1)2=−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com