Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 149024 by mathdanisur last updated on 02/Aug/21

Answered by Olaf_Thorendsen last updated on 02/Aug/21

f_n (x) = Σ_(k=1) ^n x^k  = x((1−x^n )/(1−x)) = ((x−x^(n+1) )/(1−x))  x.f′(x) = xΣ_(k=1) ^n kx^(k−1)  = Σ_(k=1) ^n kx^k   x.f′(x) = x[(((1−(n+1)x^n )(1−x)+(x−x^(n+1) ))/((1−x)^2 ))]  x.f′(x) = ((x−(n+1)x^(n+1) +nx^(n+2) )/((1−x)^2 ))  For x = (1/(2022)) :  Σ_(k=1) ^n (k/(2022^k )) = (((1/(2022))−((n+1)/(2022^(n+1) ))+(n/(2022^(n+2) )))/((((2021)/(2022)))^2 ))  Σ_(k=1) ^n (k/(2022^k )) = ((2022)/(2021^2 )).(1−((n+1)/(2022^n ))+(n/(2022^(n+1) )))

$${f}_{{n}} \left({x}\right)\:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}^{{k}} \:=\:{x}\frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}\:=\:\frac{{x}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}} \\ $$$${x}.{f}'\left({x}\right)\:=\:{x}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{kx}^{{k}−\mathrm{1}} \:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{kx}^{{k}} \\ $$$${x}.{f}'\left({x}\right)\:=\:{x}\left[\frac{\left(\mathrm{1}−\left({n}+\mathrm{1}\right){x}^{{n}} \right)\left(\mathrm{1}−{x}\right)+\left({x}−{x}^{{n}+\mathrm{1}} \right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\right] \\ $$$${x}.{f}'\left({x}\right)\:=\:\frac{{x}−\left({n}+\mathrm{1}\right){x}^{{n}+\mathrm{1}} +{nx}^{{n}+\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} } \\ $$$$\mathrm{For}\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{2022}}\:: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{k}}{\mathrm{2022}^{{k}} }\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2022}}−\frac{{n}+\mathrm{1}}{\mathrm{2022}^{{n}+\mathrm{1}} }+\frac{{n}}{\mathrm{2022}^{{n}+\mathrm{2}} }}{\left(\frac{\mathrm{2021}}{\mathrm{2022}}\right)^{\mathrm{2}} } \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{k}}{\mathrm{2022}^{{k}} }\:=\:\frac{\mathrm{2022}}{\mathrm{2021}^{\mathrm{2}} }.\left(\mathrm{1}−\frac{{n}+\mathrm{1}}{\mathrm{2022}^{{n}} }+\frac{{n}}{\mathrm{2022}^{{n}+\mathrm{1}} }\right) \\ $$

Commented by mathdanisur last updated on 02/Aug/21

Thank You Ser  Answer: ((2022)/(2021^2 ))

$${Thank}\:{You}\:{Ser} \\ $$$${Answer}:\:\frac{\mathrm{2022}}{\mathrm{2021}^{\mathrm{2}} } \\ $$

Answered by prakash jain last updated on 02/Aug/21

S=(1/(2022))+(2/(2022^2 ))+(3/(2022^3 ))+...+(n/(2022^n ))+..  (S/(2022))=       (1/(2022^2 ))+(2/(2022^3 ))+...+((n−1)/(2022^n ))+...  subtract  ((2021S)/(2022))=Σ_(k=1) ^∞ (1/(2022^k ))  blue part is geometric seres  S=((2022)/(2021^2 ))

$$\mathrm{S}=\frac{\mathrm{1}}{\mathrm{2022}}+\frac{\mathrm{2}}{\mathrm{2022}^{\mathrm{2}} }+\frac{\mathrm{3}}{\mathrm{2022}^{\mathrm{3}} }+...+\frac{{n}}{\mathrm{2022}^{{n}} }+.. \\ $$$$\frac{\mathrm{S}}{\mathrm{2022}}=\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2022}^{\mathrm{2}} }+\frac{\mathrm{2}}{\mathrm{2022}^{\mathrm{3}} }+...+\frac{{n}−\mathrm{1}}{\mathrm{2022}^{{n}} }+... \\ $$$${subtract} \\ $$$$\frac{\mathrm{2021}{S}}{\mathrm{2022}}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2022}^{{k}} } \\ $$$$\mathrm{blue}\:\mathrm{part}\:\mathrm{is}\:\mathrm{geometric}\:\mathrm{seres} \\ $$$$\mathrm{S}=\frac{\mathrm{2022}}{\mathrm{2021}^{\mathrm{2}} } \\ $$

Commented by mathdanisur last updated on 02/Aug/21

Thank You Ser

$${Thank}\:{You}\:{Ser} \\ $$

Commented by Olaf_Thorendsen last updated on 02/Aug/21

Excellent !

$$\mathrm{Excellent}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com