Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 14905 by ajfour last updated on 05/Jun/17

Commented by ajfour last updated on 05/Jun/17

Q. 14797 (construction method)  given DE=a,  EB=b ; find  Area of △AEC.    let diagonal of square=2s  2s=acos α+bcos (θ−α)   s=(1/2)(acos α+bcos (θ−α))  ...(i)  let ⊥ distance of E from AC be h.    h=s−bcos (θ−α)    h=(1/2)(acos α−bcos (θ−α))  ...(ii)  tan α=((sin α)/(cos α))=((bsin θ)/(a+bcos θ))  ⇒  asin α=b(sin θcos α−cos θsin α)  or   asin α = bsin (θ−α)      ...(iii)  Area of △AEC =(1/2)(2s)h=sh   =(1/4)[a^2 cos^2 α−b^2 cos^2 (θ−α)]                       [using (i) and (ii)]   =(1/4)[a^2 −a^2 sin^2 α−b^2 +b^2 sin^2 (θ−α)]   Area_(△AEC)  =(1/4)(a^2 −b^2 ) .                                       [using (iii)] .

$${Q}.\:\mathrm{14797}\:\left({construction}\:{method}\right) \\ $$$${given}\:{DE}={a},\:\:{EB}={b}\:;\:{find} \\ $$$${Area}\:{of}\:\bigtriangleup{AEC}. \\ $$$$ \\ $$$${let}\:{diagonal}\:{of}\:{square}=\mathrm{2}{s} \\ $$$$\mathrm{2}{s}={a}\mathrm{cos}\:\alpha+{b}\mathrm{cos}\:\left(\theta−\alpha\right) \\ $$$$\:{s}=\frac{\mathrm{1}}{\mathrm{2}}\left({a}\mathrm{cos}\:\alpha+{b}\mathrm{cos}\:\left(\theta−\alpha\right)\right)\:\:...\left({i}\right) \\ $$$${let}\:\bot\:{distance}\:{of}\:{E}\:{from}\:{AC}\:{be}\:{h}. \\ $$$$\:\:{h}={s}−{b}\mathrm{cos}\:\left(\theta−\alpha\right) \\ $$$$\:\:{h}=\frac{\mathrm{1}}{\mathrm{2}}\left({a}\mathrm{cos}\:\alpha−{b}\mathrm{cos}\:\left(\theta−\alpha\right)\right)\:\:...\left({ii}\right) \\ $$$$\mathrm{tan}\:\alpha=\frac{\mathrm{sin}\:\alpha}{\mathrm{cos}\:\alpha}=\frac{{b}\mathrm{sin}\:\theta}{{a}+{b}\mathrm{cos}\:\theta} \\ $$$$\Rightarrow\:\:{a}\mathrm{sin}\:\alpha={b}\left(\mathrm{sin}\:\theta\mathrm{cos}\:\alpha−\mathrm{cos}\:\theta\mathrm{sin}\:\alpha\right) \\ $$$${or}\:\:\:{a}\mathrm{sin}\:\alpha\:=\:{b}\mathrm{sin}\:\left(\theta−\alpha\right)\:\:\:\:\:\:...\left({iii}\right) \\ $$$${Area}\:{of}\:\bigtriangleup{AEC}\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{s}\right){h}={sh} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{4}}\left[{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \alpha−{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \left(\theta−\alpha\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{using}\:\left({i}\right)\:{and}\:\left({ii}\right)\right] \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{4}}\left[{a}^{\mathrm{2}} −{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \alpha−{b}^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\theta−\alpha\right)\right] \\ $$$$\:{Area}_{\bigtriangleup{AEC}} \:=\frac{\mathrm{1}}{\mathrm{4}}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\:. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{using}\:\left({iii}\right)\right]\:. \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

god bless you mr Ajfour.it is a beautiful  prove.i love it very much.thanks.

$${god}\:{bless}\:{you}\:{mr}\:{Ajfour}.{it}\:{is}\:{a}\:{beautiful} \\ $$$${prove}.{i}\:{love}\:{it}\:{very}\:{much}.{thanks}. \\ $$

Commented by ajfour last updated on 05/Jun/17

thanks sir, i was curious about  the independence of the concerned  area with θ .It is still not clear to  me..!

$${thanks}\:{sir},\:{i}\:{was}\:{curious}\:{about} \\ $$$${the}\:{independence}\:{of}\:{the}\:{concerned} \\ $$$${area}\:{with}\:\theta\:.{It}\:{is}\:{still}\:{not}\:{clear}\:{to} \\ $$$${me}..! \\ $$

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 05/Jun/17

for what? the area computed finally  whit no independence to θ.

$${for}\:{what}?\:{the}\:{area}\:{computed}\:{finally} \\ $$$${whit}\:{no}\:{independence}\:{to}\:\theta. \\ $$

Commented by ajfour last updated on 05/Jun/17

i mean i it is lengthy, not direct  or obvious as it is to mrW1..

$${i}\:{mean}\:{i}\:{it}\:{is}\:{lengthy},\:{not}\:{direct} \\ $$$${or}\:{obvious}\:{as}\:{it}\:{is}\:{to}\:{mrW}\mathrm{1}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com