Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 149077 by mnjuly1970 last updated on 02/Aug/21

        Ω := ∫_0 ^( 1) ((ln ( 1+ (√x) ))/(1+x)) dx =?   .....m.n.....

$$ \\ $$$$\:\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\:\left(\:\mathrm{1}+\:\sqrt{{x}}\:\right)}{\mathrm{1}+{x}}\:{dx}\:=? \\ $$$$\:.....{m}.{n}..... \\ $$

Answered by mindispower last updated on 02/Aug/21

(√x)=t  =∫_0 ^1 ((ln(1+t)2tdt)/(1+t^2 ))=A  B=∫_0 ^1 ((ln(1−t)2tdt)/(1+t^2 ))  A+B=∫_0 ^1 ((ln(1−t^2 )dt^2 )/(1+t^2 ))=∫_0 ^1 ((ln(1−t))/(1+t))dt  t→((1−t)/(1+t))=∫_0 ^1 ((ln(((2t)/(1+t))))/(2/(1+t))).(2/((1+t)^2 ))dt  =∫_0 ^1 ((ln(2t))/(1+t))−((ln(1+t))/(1+t))dt  =(1/2)ln^2 (2)+∫_0 ^1 ((ln(t))/(1+t))dt=((ln^2 (2))/2)−∫_0 ^1 ((−ln(1−(−t)))/(−t))d(−t)  =((ln^2 (2))/2)−Li_2 (−1)  B−A=∫_0 ^1 ((ln(((1−t)/(1+t))))/(1+t^2 )).2tdt  ((1−t)/(1+t))=x  =∫_0 ^1 4((ln(x))/((1+x)^2 )).((1−x)/(1+x)).(((1+x)^2 dx)/(2+2x^2 ))  =2∫_0 ^1 ((ln(x)(1−x)dx)/((1+x)(1+x^2 )))  ((1−x)/((1+x)(1+x^2 )))=(1/(1+x))−(x/(1+x^2 ))  2∫_0 ^1 ((ln(x))/(1+x))−∫_0 ^1 ((ln(x).dx^2 )/(1+x^2 ))=(3/2)∫_0 ^1 ((ln(x))/(1+x))dx  =−(3/2)∫_0 ^1 ((ln(1−(−x)))/(−x))d(−x)=(3/2)Li_2 (−1)  A=(1/2)(A+B+A−B)  ((ln^2 (2))/4)+((Li_2 (−1))/4)=(1/4)(ln^2 (2)+(π^2 /(12)))

$$\sqrt{{x}}={t} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{t}\right)\mathrm{2}{tdt}}{\mathrm{1}+{t}^{\mathrm{2}} }={A} \\ $$$${B}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{t}\right)\mathrm{2}{tdt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${A}+{B}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{t}^{\mathrm{2}} \right){dt}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{t}\right)}{\mathrm{1}+{t}}{dt} \\ $$$${t}\rightarrow\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}}\right)}{\frac{\mathrm{2}}{\mathrm{1}+{t}}}.\frac{\mathrm{2}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{t}}−\frac{{ln}\left(\mathrm{1}+{t}\right)}{\mathrm{1}+{t}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{\mathrm{1}+{t}}{dt}=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{ln}\left(\mathrm{1}−\left(−{t}\right)\right)}{−{t}}{d}\left(−{t}\right) \\ $$$$=\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}−{Li}_{\mathrm{2}} \left(−\mathrm{1}\right) \\ $$$${B}−{A}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }.\mathrm{2}{tdt} \\ $$$$\frac{\mathrm{1}−{t}}{\mathrm{1}+{t}}={x} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{4}\frac{{ln}\left({x}\right)}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }.\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}.\frac{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} {dx}}{\mathrm{2}+\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)\left(\mathrm{1}−{x}\right){dx}}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$$\frac{\mathrm{1}−{x}}{\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{1}+{x}}−\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right).{dx}^{\mathrm{2}} }{\mathrm{1}+{x}^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({x}\right)}{\mathrm{1}+{x}}{dx} \\ $$$$=−\frac{\mathrm{3}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−\left(−{x}\right)\right)}{−{x}}{d}\left(−{x}\right)=\frac{\mathrm{3}}{\mathrm{2}}{Li}_{\mathrm{2}} \left(−\mathrm{1}\right) \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}\left({A}+{B}+{A}−{B}\right) \\ $$$$\frac{{ln}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{4}}+\frac{{Li}_{\mathrm{2}} \left(−\mathrm{1}\right)}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}}\left({ln}^{\mathrm{2}} \left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 02/Aug/21

   thanks alot sir power....

$$\:\:\:{thanks}\:{alot}\:{sir}\:{power}.... \\ $$

Commented by Tawa11 last updated on 02/Aug/21

weldone sir.

$$\mathrm{weldone}\:\mathrm{sir}. \\ $$

Commented by mindispower last updated on 03/Aug/21

withe pleasur

$${withe}\:{pleasur} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com