All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 149113 by bramlexs22 last updated on 03/Aug/21
∫0πcos3x7−sin2xdx=?
Answered by mathmax by abdo last updated on 03/Aug/21
Ψ=∫0πcos3x7−sin2xdx⇒Ψ=∫0πcos3x7−(1−cos2x)dx=∫0πcos3x6+cos2xdx=∫0πcosx(cos2x+6)−6cosxcos2x+6dx=∫0πcosxdx−6∫0πcosx7−sin2xdxwehave∫0πcosxdx=[sinx]0π=0and∫0πcosxdx7−sin2x=∫0π2cosx7−sin2xdx+∫π2πcosx7−sin2x(→x=π2+t)=sinx=y∫01dy7−y2+∫0π2−sintdt7−cos2t(→cost=y)=∫01dy7−y2−∫01dy7−y2=0⇒Ψ=0
Commented by bramlexs22 last updated on 03/Aug/21
yes.thanks
Commented by ArielVyny last updated on 04/Aug/21
mrmathmaxwhenwetaket=tan(x)whatisthevalueofcosxandsinx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com