Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 149151 by mathdanisur last updated on 03/Aug/21

lim_(n→∞)  (1/( (√n))) (1 + (1/( (√2))) + (1/( (√3))) + ... + (1/( (√n)))) = ?

$$\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:...\:+\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)\:=\:? \\ $$

Answered by Kamel last updated on 03/Aug/21

L=lim_(n→∞)  (1/( (√n))) (1 + (1/( (√2))) + (1/( (√3))) + ... + (1/( (√n))))      =lim_(n→+∞) (1/( (√n)))Σ_(k=1) ^n (1/( (√k)))=lim_(n→+∞) (1/n)Σ_(k=1) ^n (√(n/k))=∫_0 ^1 (dx/( (√x)))=2

$${L}=\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:...\:+\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)\: \\ $$$$\:\:\:=\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{k}}}=\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{\frac{{n}}{{k}}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\:\sqrt{{x}}}=\mathrm{2} \\ $$

Commented by mathdanisur last updated on 03/Aug/21

Thank You Ser

$${Thank}\:{You}\:{Ser} \\ $$

Answered by puissant last updated on 03/Aug/21

=lim_(n→∞) (1/( (√n)))  Σ_(k=1) ^n (√(1/k))  =lim_(n→∞) (1/n)  Σ_(k=1) ^n (√((n/k) ))= f((k/n))  d′apre^� s riemann, on a:  =∫_0 ^1 (1/( (√x))) dx = ∫_0 ^1 x^(−(1/2)) dx = 2[(√x)]_0 ^1 =2..

$$=\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}}\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\sqrt{\frac{\mathrm{1}}{\mathrm{k}}} \\ $$$$=\mathrm{lim}_{\mathrm{n}\rightarrow\infty} \frac{\mathrm{1}}{\mathrm{n}}\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\sqrt{\frac{\mathrm{n}}{\mathrm{k}}\:}=\:\mathrm{f}\left(\frac{\mathrm{k}}{\mathrm{n}}\right) \\ $$$$\mathrm{d}'\mathrm{apr}\grave {\mathrm{e}s}\:\mathrm{riemann},\:\mathrm{on}\:\mathrm{a}: \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\:\mathrm{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{dx}\:=\:\mathrm{2}\left[\sqrt{\mathrm{x}}\right]_{\mathrm{0}} ^{\mathrm{1}} =\mathrm{2}.. \\ $$

Commented by mathdanisur last updated on 03/Aug/21

Thank You Ser

$${Thank}\:{You}\:{Ser} \\ $$

Answered by Rachid last updated on 03/Aug/21

=lim_(n→+∞) (1/( (√n)))Σ_(i=1) ^n (1/( (√i)))=lim_(n→+∞) (1/n)Σ_(i=1) ^n ((√n)/( (√i)  ))  =lim_(n→+∞) (1/n)Σ_(i=1) ^n (1/( (√((i/n) ))))=∫_0 ^1 (1/( (√(x ))))dx=2

$$=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{i}}}=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\sqrt{{n}}}{\:\sqrt{{i}}\:\:} \\ $$$$=\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\frac{{i}}{{n}}\:}}=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{\mathrm{1}}{\:\sqrt{{x}\:}}{dx}=\mathrm{2} \\ $$

Commented by mathdanisur last updated on 03/Aug/21

Thank You Ser

$${Thank}\:{You}\:{Ser} \\ $$

Answered by dumitrel last updated on 03/Aug/21

use (1/( (√(n+1))))<(√(n+1))−(√n)<(1/( (√n)))

$${use}\:\frac{\mathrm{1}}{\:\sqrt{{n}+\mathrm{1}}}<\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}<\frac{\mathrm{1}}{\:\sqrt{{n}}} \\ $$

Commented by mathdanisur last updated on 03/Aug/21

Thank You Ser

$${Thank}\:{You}\:{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com