Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 149189 by Naser last updated on 03/Aug/21

Commented by Tawa11 last updated on 03/Aug/21

great

$$\mathrm{great} \\ $$

Answered by Ar Brandon last updated on 03/Aug/21

S=Σ_(k=1) ^n (1/((3k−2)(2k+1)))      =Σ_(k=1) ^n ((3/7)∙(1/((3k−2)))−(2/7)∙(1/((2k+1))))      =(1/7)Σ_(k=1) ^n (1/(k−(2/3)))−(1/(k+(1/2)))

$${S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{k}−\mathrm{2}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\:\:\:\:=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{3}}{\mathrm{7}}\centerdot\frac{\mathrm{1}}{\left(\mathrm{3}{k}−\mathrm{2}\right)}−\frac{\mathrm{2}}{\mathrm{7}}\centerdot\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)}\right) \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{7}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}−\frac{\mathrm{2}}{\mathrm{3}}}−\frac{\mathrm{1}}{{k}+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$

Answered by nimnim last updated on 03/Aug/21

Let me give a try.  S=Σ_(k=1) ^n (1/((3k−2)(2k+1)))     =Σ_(k=1) ^n ((3/7).(1/(3k−2))−(2/7).(1/(2k+1)))     =(3/7)Σ_(k=1) ^n  (1/((3k−2)))−(2/7)Σ_(k=1) ^n (1/((2k+1)))     =(3/7)((1/1)+(1/4)+(1/7)+....+(1/(1+(n−1).3)))              −(2/7)((1/3)+(1/5)+(1/7)+...+(1/(3+(n−1).2)))       both are harmonic progression to n terms        S=(1/d)ln∣(((2a+(2n−1)d)/(2a−d)))∣  ∴S=(3/7)×(1/3)ln∣(((2.1+(2n−1).3)/(2.1−3)))∣−(2/7)×(1/2)ln∣(((2.3+(2n−1).2)/(2.3−2)))∣         =(1/7)ln∣((2n−1)/(−1))∣−(1/7)ln∣((4+4n)/4)∣         =(1/7)(ln∣1−2n∣−ln∣1+n∣)         =(1/7)ln∣((1−2n)/(1+n))∣

$${Let}\:{me}\:{give}\:{a}\:{try}. \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{k}−\mathrm{2}\right)\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\:\:\:=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{3}}{\mathrm{7}}.\frac{\mathrm{1}}{\mathrm{3}{k}−\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{7}}.\frac{\mathrm{1}}{\mathrm{2}{k}+\mathrm{1}}\right) \\ $$$$\:\:\:=\frac{\mathrm{3}}{\mathrm{7}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{3}{k}−\mathrm{2}\right)}−\frac{\mathrm{2}}{\mathrm{7}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\:\:\:=\frac{\mathrm{3}}{\mathrm{7}}\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{7}}+....+\frac{\mathrm{1}}{\mathrm{1}+\left({n}−\mathrm{1}\right).\mathrm{3}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{2}}{\mathrm{7}}\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{7}}+...+\frac{\mathrm{1}}{\mathrm{3}+\left({n}−\mathrm{1}\right).\mathrm{2}}\right) \\ $$$$\:\:\:\:\:{both}\:{are}\:{harmonic}\:{progression}\:{to}\:{n}\:{terms} \\ $$$$\:\:\:\:\:\:{S}=\frac{\mathrm{1}}{{d}}{ln}\mid\left(\frac{\mathrm{2}{a}+\left(\mathrm{2}{n}−\mathrm{1}\right){d}}{\mathrm{2}{a}−{d}}\right)\mid \\ $$$$\therefore{S}=\frac{\mathrm{3}}{\mathrm{7}}×\frac{\mathrm{1}}{\mathrm{3}}{ln}\mid\left(\frac{\mathrm{2}.\mathrm{1}+\left(\mathrm{2}{n}−\mathrm{1}\right).\mathrm{3}}{\mathrm{2}.\mathrm{1}−\mathrm{3}}\right)\mid−\frac{\mathrm{2}}{\mathrm{7}}×\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\left(\frac{\mathrm{2}.\mathrm{3}+\left(\mathrm{2}{n}−\mathrm{1}\right).\mathrm{2}}{\mathrm{2}.\mathrm{3}−\mathrm{2}}\right)\mid \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{7}}{ln}\mid\frac{\mathrm{2}{n}−\mathrm{1}}{−\mathrm{1}}\mid−\frac{\mathrm{1}}{\mathrm{7}}{ln}\mid\frac{\mathrm{4}+\mathrm{4}{n}}{\mathrm{4}}\mid \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{7}}\left({ln}\mid\mathrm{1}−\mathrm{2}{n}\mid−{ln}\mid\mathrm{1}+{n}\mid\right) \\ $$$$\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{7}}{ln}\mid\frac{\mathrm{1}−\mathrm{2}{n}}{\mathrm{1}+{n}}\mid \\ $$$$\:\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com