Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 14920 by Tinkutara last updated on 05/Jun/17

A swimmer crosses a flowing river of  width d to and fro in time t_1 . The time  taken to cover the same distance up  and down the stream is t_2 . If t_3  is the  time the swimmer would take to swim  a distance 2d in still water, then prove  that t_1 ^2  = t_2 t_3 .

$$\mathrm{A}\:\mathrm{swimmer}\:\mathrm{crosses}\:\mathrm{a}\:\mathrm{flowing}\:\mathrm{river}\:\mathrm{of} \\ $$$$\mathrm{width}\:{d}\:\mathrm{to}\:\mathrm{and}\:\mathrm{fro}\:\mathrm{in}\:\mathrm{time}\:{t}_{\mathrm{1}} .\:\mathrm{The}\:\mathrm{time} \\ $$$$\mathrm{taken}\:\mathrm{to}\:\mathrm{cover}\:\mathrm{the}\:\mathrm{same}\:\mathrm{distance}\:\mathrm{up} \\ $$$$\mathrm{and}\:\mathrm{down}\:\mathrm{the}\:\mathrm{stream}\:\mathrm{is}\:{t}_{\mathrm{2}} .\:\mathrm{If}\:{t}_{\mathrm{3}} \:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{time}\:\mathrm{the}\:\mathrm{swimmer}\:\mathrm{would}\:\mathrm{take}\:\mathrm{to}\:\mathrm{swim} \\ $$$$\mathrm{a}\:\mathrm{distance}\:\mathrm{2}{d}\:\mathrm{in}\:\mathrm{still}\:\mathrm{water},\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{that}\:{t}_{\mathrm{1}} ^{\mathrm{2}} \:=\:{t}_{\mathrm{2}} {t}_{\mathrm{3}} . \\ $$

Answered by ajfour last updated on 05/Jun/17

Commented by ajfour last updated on 05/Jun/17

to go to the other bank and return  back to same point (to and fro)  swimmer must swim at an angle  θ (see fig.) such that     vsin 𝛉=u     ...(i)    t_1 =((2d)/(vcos 𝛉))      ....(ii)  to go upstream a distance d and  return  back time taken is     t_2 =(d/(v−u))+(d/(v+u))    ....(iii)  to swim a distance 2d in still  water time taken is    t_3 =((2d)/v) .    t_2 t_3 =((2d^2 )/v)(((2v)/(v^2 −u^2 ))) =((4d^2 )/(v^2 −v^2 sin^2 θ))          =  (((2d)/(vcos θ)))^2  = t_1 ^2                         [see (ii), (iii), and (i) ].

$${to}\:{go}\:{to}\:{the}\:{other}\:{bank}\:{and}\:{return} \\ $$$${back}\:{to}\:{same}\:{point}\:\left({to}\:{and}\:{fro}\right) \\ $$$${swimmer}\:{must}\:{swim}\:{at}\:{an}\:{angle} \\ $$$$\theta\:\left({see}\:{fig}.\right)\:{such}\:{that} \\ $$$$\:\:\:\boldsymbol{{v}}\mathrm{sin}\:\boldsymbol{\theta}=\boldsymbol{{u}}\:\:\:\:\:...\left({i}\right) \\ $$$$\:\:\boldsymbol{{t}}_{\mathrm{1}} =\frac{\mathrm{2}\boldsymbol{{d}}}{\boldsymbol{{v}}\mathrm{cos}\:\boldsymbol{\theta}}\:\:\:\:\:\:....\left({ii}\right) \\ $$$${to}\:{go}\:{upstream}\:{a}\:{distance}\:\boldsymbol{{d}}\:{and} \\ $$$${return}\:\:{back}\:{time}\:{taken}\:{is} \\ $$$$\:\:\:\boldsymbol{{t}}_{\mathrm{2}} =\frac{\boldsymbol{{d}}}{\boldsymbol{{v}}−\boldsymbol{{u}}}+\frac{\boldsymbol{{d}}}{\boldsymbol{{v}}+\boldsymbol{{u}}}\:\:\:\:....\left({iii}\right) \\ $$$${to}\:{swim}\:{a}\:{distance}\:\mathrm{2}\boldsymbol{{d}}\:{in}\:{still} \\ $$$${water}\:{time}\:{taken}\:{is} \\ $$$$\:\:\boldsymbol{{t}}_{\mathrm{3}} =\frac{\mathrm{2}\boldsymbol{{d}}}{\boldsymbol{{v}}}\:. \\ $$$$\:\:{t}_{\mathrm{2}} {t}_{\mathrm{3}} =\frac{\mathrm{2}{d}^{\mathrm{2}} }{{v}}\left(\frac{\mathrm{2}{v}}{{v}^{\mathrm{2}} −{u}^{\mathrm{2}} }\right)\:=\frac{\mathrm{4}{d}^{\mathrm{2}} }{{v}^{\mathrm{2}} −{v}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\:\:\:\:\:\:\:\:=\:\:\left(\frac{\mathrm{2}{d}}{{v}\mathrm{cos}\:\theta}\right)^{\mathrm{2}} \:=\:\boldsymbol{{t}}_{\mathrm{1}} ^{\mathrm{2}} \:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{see}\:\left({ii}\right),\:\left({iii}\right),\:{and}\:\left({i}\right)\:\right]. \\ $$

Commented by Tinkutara last updated on 05/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com