Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 149342 by MJS_new last updated on 04/Aug/21

is this true and is there a proof?  ∀k∈N∣k>1  ((Σ_(n=1) ^(k^2 −1) (√(k+(√n))))/(Σ_(n=1) ^(k^2 −1) (√(k−(√n)))))=1+(√2)

isthistrueandisthereaproof? kNk>1 k21n=1k+nk21n=1kn=1+2

Commented bymr W last updated on 04/Aug/21

yes, it′s true.

yes,itstrue.

Answered by mr W last updated on 04/Aug/21

proof:  ((√(k+(√n)))−(√(k−(√n))))^2 =2(k−(√(k^2 −n)))  (√(k+(√n)))−(√(k−(√n)))=(√2)×(√(k−(√(k^2 −n))))  Σ_(n=1) ^(k^2 −1) (√(k+(√n)))−Σ_(n=1) ^(k^2 −1) (√(k−(√n)))=(√2)×Σ_(n=k^2 −1) ^1 (√(k−(√(k^2 −n))))  Σ_(n=1) ^(k^2 −1) (√(k+(√n)))−Σ_(n=1) ^(k^2 −1) (√(k−(√n)))=(√2)×Σ_(n=1) ^(k^2 −1) (√(k−(√n)))  Σ_(n=1) ^(k^2 −1) (√(k+(√n)))=((√2)+1)Σ_(n=1) ^(k^2 −1) (√(k−(√n)))  ⇒((Σ_(n=1) ^(k^2 −1) (√(k+(√n))))/(Σ_(n=1) ^(k^2 −1) (√(k−(√n)))))=(√2)+1

proof: (k+nkn)2=2(kk2n) k+nkn=2×kk2n k21n=1k+nk21n=1kn=2×1n=k21kk2n k21n=1k+nk21n=1kn=2×k21n=1kn k21n=1k+n=(2+1)k21n=1kn k21n=1k+nk21n=1kn=2+1

Commented byMJS_new last updated on 04/Aug/21

thank you!

thankyou!

Commented byTawa11 last updated on 06/Nov/21

great

great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com