Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 149625 by puissant last updated on 06/Aug/21

1)∫_0 ^(2π) (1/(a+sin(t)))dt , a>0  2)∫_(2π) ^(4π) (1/(2+sin(t)))dt..

$$\left.\mathrm{1}\right)\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{1}}{\mathrm{a}+\mathrm{sin}\left(\mathrm{t}\right)}\mathrm{dt}\:,\:\mathrm{a}>\mathrm{0} \\ $$ $$\left.\mathrm{2}\right)\int_{\mathrm{2}\pi} ^{\mathrm{4}\pi} \frac{\mathrm{1}}{\mathrm{2}+\mathrm{sin}\left(\mathrm{t}\right)}\mathrm{dt}.. \\ $$

Answered by ArielVyny last updated on 06/Aug/21

∫_0 ^(2π) (1/(a+sint))dt  posons t=tan((x/2))→sint=((2t)/(1+t^2 ))  2dt=(1+t^2 )dx→dx=(2/(1+t^2 ))dt  2π=tan((x/2))→x=2arctg(2π)  ∫_0 ^(2arctg(2π)) (1/(a+((2t)/(1+t^2 ))))×(2/(1+t^2 ))dt  ∫_0 ^(2arctg(2π)) (2/(a(1+t^2 )+2t))dt=2∫_0 ^(2arctg(2π)) (1/(at^2 +2t+a))  2∫_0 ^(2arctg(2π)) (1/(a[(t+(2/a))^2 −(4/a^2 )+(a^2 /a^2 )]))dt  (2/a)∫_0 ^(2arctg(2π)) (1/([(t+(2/a))^2 +((a^2 −4)/a^2 )]))dt  (2/a)∫_0 ^(2arctg(2π)) (1/((((a^2 −4)/a^2 ))[1+(a^2 /(a^2 −4))(t+(2/a))^2 ]))dt  (2/a)×(a^2 /(a^2 −4))∫_0 ^(2arctg(2π)) (1/(1+(a^2 /(a^2 −4))(t+(2/a))^2 ))  (2/a)∫_0 ^(2arctg(2π)) (a^2 /(a^2 −4))(1/(1+[(√((a^2 /(a^2 −4))(t+(2/a))))]^2 ))dt  (2/a)arctg[((a^2 /(a^2 −4)))(2arctg(2π)+(2/a))] a>0

$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{1}}{{a}+{sint}}{dt} \\ $$ $${posons}\:{t}={tan}\left(\frac{{x}}{\mathrm{2}}\right)\rightarrow{sint}=\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$ $$\mathrm{2}{dt}=\left(\mathrm{1}+{t}^{\mathrm{2}} \right){dx}\rightarrow{dx}=\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$ $$\mathrm{2}\pi={tan}\left(\frac{{x}}{\mathrm{2}}\right)\rightarrow{x}=\mathrm{2}{arctg}\left(\mathrm{2}\pi\right) \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)} \frac{\mathrm{1}}{{a}+\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}×\frac{\mathrm{2}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$ $$\int_{\mathrm{0}} ^{\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)} \frac{\mathrm{2}}{{a}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)+\mathrm{2}{t}}{dt}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)} \frac{\mathrm{1}}{{at}^{\mathrm{2}} +\mathrm{2}{t}+{a}} \\ $$ $$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)} \frac{\mathrm{1}}{{a}\left[\left({t}+\frac{\mathrm{2}}{{a}}\right)^{\mathrm{2}} −\frac{\mathrm{4}}{{a}^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right]}{dt} \\ $$ $$\frac{\mathrm{2}}{{a}}\int_{\mathrm{0}} ^{\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)} \frac{\mathrm{1}}{\left[\left({t}+\frac{\mathrm{2}}{{a}}\right)^{\mathrm{2}} +\frac{{a}^{\mathrm{2}} −\mathrm{4}}{{a}^{\mathrm{2}} }\right]}{dt} \\ $$ $$\frac{\mathrm{2}}{{a}}\int_{\mathrm{0}} ^{\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)} \frac{\mathrm{1}}{\left(\frac{{a}^{\mathrm{2}} −\mathrm{4}}{{a}^{\mathrm{2}} }\right)\left[\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{4}}\left({t}+\frac{\mathrm{2}}{{a}}\right)^{\mathrm{2}} \right]}{dt} \\ $$ $$\frac{\mathrm{2}}{{a}}×\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)} \frac{\mathrm{1}}{\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{4}}\left({t}+\frac{\mathrm{2}}{{a}}\right)^{\mathrm{2}} } \\ $$ $$\frac{\mathrm{2}}{{a}}\int_{\mathrm{0}} ^{\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)} \frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{4}}\frac{\mathrm{1}}{\mathrm{1}+\left[\sqrt{\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{4}}\left({t}+\frac{\mathrm{2}}{{a}}\right)}\right]^{\mathrm{2}} }{dt} \\ $$ $$\frac{\mathrm{2}}{{a}}{arctg}\left[\left(\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\mathrm{4}}\right)\left(\mathrm{2}{arctg}\left(\mathrm{2}\pi\right)+\frac{\mathrm{2}}{{a}}\right)\right]\:{a}>\mathrm{0} \\ $$ $$ \\ $$ $$ \\ $$

Commented byArielVyny last updated on 06/Aug/21

peut-etre ma methode est un peu drastique  je vais voir une autre approche

$${peut}-{etre}\:{ma}\:{methode}\:{est}\:{un}\:{peu}\:{drastique} \\ $$ $${je}\:{vais}\:{voir}\:{une}\:{autre}\:{approche} \\ $$

Commented byArielVyny last updated on 06/Aug/21

et je pense que a>1 pour que ta reponse soit valide

$${et}\:{je}\:{pense}\:{que}\:{a}>\mathrm{1}\:{pour}\:{que}\:{ta}\:{reponse}\:{soit}\:{valide} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com