Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 149667 by mnjuly1970 last updated on 06/Aug/21

   f (x )= (1/( (√( 1 + sin (x ))) +(√( 1 + cos (x)))))              find:                            Min( f (x)) =?

f(x)=11+sin(x)+1+cos(x)find:Min(f(x))=?

Answered by iloveisrael last updated on 07/Aug/21

f(x)=(1/(∣cos (1/2)x+sin (1/2)x∣+(√2) ∣cos (1/2)x∣))  f(x)=(1/( (√2) ∣sin ((1/2)x+(π/4))∣+(√2) ∣cos (1/2)x∣))  when cos (1/2)x =1  or (1/2)x= 0  f_1 = (1/( (√2) sin ((π/4))+(√2))) = (1/( (√2) +1))=(√2)−1  when sin ((1/2)x+(π/4))=1  or (1/2)x=(π/4)  f_2 = (1/( (√2) +(√2)((1/( (√2))))))=(1/( (√2)+1))=(√2)−1  f(x)= (√2) −1  when (1/2)x=(π/8) we get  f_3 =(1/( (√2) {∣sin ((3π)/8)∣+∣cos (π/8)∣}))  sin ((3π)/8)=(√((1−cos ((3π)/4))/2))=(√((1+((√2)/2))/2))=(√((2+(√2))/4))=((√(2+(√2)))/2)  cos (π/8)=(√((1+cos (π/4))/2))=(√((2+(√2))/4))=((√(2+(√2)))/2)  f(x)_(min) =f_3 =(1/( (√2) {((√(2+(√2)))/2)+((√(2+(√2)))/2)}))   = (1/( (√2) ((√(2+(√2))))))

f(x)=1cos12x+sin12x+2cos12xf(x)=12sin(12x+π4)+2cos12xwhencos12x=1or12x=0f1=12sin(π4)+2=12+1=21whensin(12x+π4)=1or12x=π4f2=12+2(12)=12+1=21f(x)=21when12x=π8wegetf3=12{sin3π8+cosπ8}sin3π8=1cos3π42=1+222=2+24=2+22cosπ8=1+cosπ42=2+24=2+22f(x)min=f3=12{2+22+2+22}=12(2+2)

Commented by mnjuly1970 last updated on 06/Aug/21

thx master...

thxmaster...

Commented by mnjuly1970 last updated on 06/Aug/21

   min?  (1/( (√2) ((√(2+(√2) )) )))

min?12(2+2)

Answered by EDWIN88 last updated on 07/Aug/21

f(x)=(1/( (√(1+sin x))+(√(1+cos x))))   let g(x)=(√(1+sin x)) +(√(1+cos x))  then f(x)=(1/(g(x))) , f(x)_(min)  it  must be g(x)_(max)   ⇒take g′(x)=((cos x)/(2(√(1+sin x))))−((sin x)/(2(√(1+cos x)))) =0  ⇒cos x(√(1+cos x)) = sin x(√(1+sin x))  ⇒cos^2 x+cos^3 x=sin^2 x+sin^3 x  ⇒cos^2 x−sin^2 x=sin^3 x−cos^3 x  ⇒(cos x−sin x)(cos x+sin x)=−(cos x−sin x)(1+sin xcos x)  ⇒(cos x−sin x){cos x+sin x+1+sin xcos x)=0  when cos x=sin x ⇒x=(π/4)  g(x)_(max) = (√(1+sin (π/4)))+(√(1+cos (π/4)))  g(x)_(max) =(√((2+(√2))/2))+(√((2+(√2))/2))  g(x)_(max) =2(√((2+(√2))/2)) = (√2) ((√(2+(√2))))  therefore f(x)_(min) =(1/( (√2)((√(2+(√2))))))

f(x)=11+sinx+1+cosxletg(x)=1+sinx+1+cosxthenf(x)=1g(x),f(x)minitmustbeg(x)maxtakeg(x)=cosx21+sinxsinx21+cosx=0cosx1+cosx=sinx1+sinxcos2x+cos3x=sin2x+sin3xcos2xsin2x=sin3xcos3x(cosxsinx)(cosx+sinx)=(cosxsinx)(1+sinxcosx)(cosxsinx){cosx+sinx+1+sinxcosx)=0whencosx=sinxx=π4g(x)max=1+sinπ4+1+cosπ4g(x)max=2+22+2+22g(x)max=22+22=2(2+2)thereforef(x)min=12(2+2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com