Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 149673 by mnjuly1970 last updated on 06/Aug/21

   solve ::  [ 1]    𝛗 := ∫_0 ^(  ∞ ) ((ln^( 2)  (e x ))/(e^( 4)  +x^( 2) )) dx =((π k)/e^( 2) )                              k:= ?                    [ 2 ]   Ω := ∫_(0 ) ^( ∞)  (( ln^( 3)  (x ))/( e^( 2) + x^( 2) )) dx = ?

solve::[1]ϕ:=0ln2(ex)e4+x2dx=πke2k:=?[2]Ω:=0ln3(x)e2+x2dx=?

Answered by mathmax by abdo last updated on 06/Aug/21

Φ=∫_0 ^∞  ((ln^2 (ex))/(x^2  +e^4 ))dx  changement x=e^2 t give  Φ=∫_0 ^∞  ((ln^2 (e^3 t))/(e^4 t^2  +e^4 ))(e^2 dt) =(1/e^2 )∫_0 ^∞   (((3+lnt)^2 )/(t^2  +1))dt  ⇒e^2 Φ=∫_0 ^∞  ((ln^2 t+6lnt +9)/(t^2  +1))dt  =∫_0 ^∞  ((ln^2 t)/(1+t^2 ))dt+6∫_0 ^∞  ((lnt)/(t^2  +1))dt +9∫_0 ^∞  (dt/(t^2  +1))  ∫_0 ^∞  ((lnt)/(t^2  +1))dt=0(proved)   ,∫_0 ^∞  (dt/(t^(2 ) +1))=(π/2)  f(a)=∫_0 ^∞  (t^a /(1+t^2 ))dt  =∫_0 ^∞  (e^(alnt) /(1+t^2 ))dt ⇒  f^′ (a)=∫_0 ^∞ ((lnt e^(alnt) )/(1+t^2 ))dt ⇒f^((2)) (a)=∫_0 ^∞  ((t^a ln^2 t)/(t^2  +1))dt ⇒  f^((2)) (0) =∫_0 ^∞  ((ln^2 t)/(t^2  +1))dt  changement t^2 =y give t=y^(1/2)   f(a)=∫_0 ^∞  (t^(a/2) /(1+y))(1/2)y^((1/2)−1)  dy =(1/2)∫_0 ^∞  (t^(((a+1)/2)−1) /(1+y))dy  =(1/2)×(π/(sin((((a+1)/2))π))) =(π/(2cos(((πa)/2)))) ⇒  f^′ (a)=(π/2)(−(((π/2)sin(((πa)/2)))/(cos^2 (((πa)/2)))))=−(π^2 /4)×((sin(((πa)/2)))/(cos^2 (((πa)/2)))) ⇒  f^((2)) (a)=−(π^2 /4){(((π/2)cos(((πa)/2))cos^2 (((πa)/2))+2.(π/2)sin(((πa)/2))cos(((πa)/2)))/(cos^4 (((πa)/2))))}  =−(π^3 /8){((cos^2 (((πa)/2))+2sin(((πa)/2)))/(cos^3 (((πa)/2))))} ⇒f^((2)) (0)=−(π^3 /8) ⇒  e^2 Φ=−(π^3 /8)+((9π)/2) ⇒Φ=(π/e^2 )(−(π^2 /8)+(9/2))=((πk)/e^2 ) ⇒k=(9/2)−(π^2 /8)

Φ=0ln2(ex)x2+e4dxchangementx=e2tgiveΦ=0ln2(e3t)e4t2+e4(e2dt)=1e20(3+lnt)2t2+1dte2Φ=0ln2t+6lnt+9t2+1dt=0ln2t1+t2dt+60lntt2+1dt+90dtt2+10lntt2+1dt=0(proved),0dtt2+1=π2f(a)=0ta1+t2dt=0ealnt1+t2dtf(a)=0lntealnt1+t2dtf(2)(a)=0taln2tt2+1dtf(2)(0)=0ln2tt2+1dtchangementt2=ygivet=y12f(a)=0ta21+y12y121dy=120ta+1211+ydy=12×πsin((a+12)π)=π2cos(πa2)f(a)=π2(π2sin(πa2)cos2(πa2))=π24×sin(πa2)cos2(πa2)f(2)(a)=π24{π2cos(πa2)cos2(πa2)+2.π2sin(πa2)cos(πa2)cos4(πa2)}=π38{cos2(πa2)+2sin(πa2)cos3(πa2)}f(2)(0)=π38e2Φ=π38+9π2Φ=πe2(π28+92)=πke2k=92π28

Commented by Ar Brandon last updated on 07/Aug/21

Bravo ��

Commented by Tawa11 last updated on 06/Aug/21

great

great

Commented by Ar Brandon last updated on 06/Aug/21

Sir, f(a)=(π/(2cos(((πa)/2))))⇒f ′(a)=(π^2 /4)∙((sin((π/2)a))/(cos^2 ((π/2)a)))   instead of −(π^2 /4)∙((sin((π/2)a))/(cos^2 ((π/2)a))). Please check !  Line 10 →Line 11

Sir,f(a)=π2cos(πa2)f(a)=π24sin(π2a)cos2(π2a)insteadofπ24sin(π2a)cos2(π2a).Pleasecheck!Line10Line11

Commented by mathmax by abdo last updated on 07/Aug/21

sorry f^′ (a)=(π^2 /4)×((sin(((πa)/2)))/(cos^2 (((πa)/2)))) ⇒  f^((2)) (a)=(π^3 /8)×((cos^2 (((πa)/2))+2sin(((πa)/2)))/(cos^3 (((πa)/2)))) ⇒f^((2)) (0)=(π^3 /8) ⇒  e^2 Φ=(π^3 /8)+((9π)/2) ⇒Φ=(π/e^2 )((π^2 /8)+(9/2)) ⇒k=(π^2 /8)+(9/2)

sorryf(a)=π24×sin(πa2)cos2(πa2)f(2)(a)=π38×cos2(πa2)+2sin(πa2)cos3(πa2)f(2)(0)=π38e2Φ=π38+9π2Φ=πe2(π28+92)k=π28+92

Commented by mathmax by abdo last updated on 07/Aug/21

yes error of sing...!

yeserrorofsing...!

Answered by Ar Brandon last updated on 06/Aug/21

φ=∫_0 ^∞ ((ln^2 (ex))/(e^4 +x^2 ))dx=∫_0 ^∞ ((1+2lnx+ln^2 x)/(e^4 +x^2 ))dx     =(1/e^2 )∫_0 ^∞ ((1+2ln(e^2 u)+ln^2 (e^2 u))/(1+u^2 ))du     =(π/(2e^2 ))+(1/e^2 )∫_0 ^∞ ((4+2lnu+4+4lnu+ln^2 u)/(1+u^2 ))du     =(π/(2e^2 ))+((4π)/e^2 )+(1/e^2 )∫_0 ^∞ ((6lnu+ln^2 u)/(1+u^2 ))du     =((9π)/(2e^2 ))+(6/e^2 )∙(∂/∂α)∣_(α=1) ∫_0 ^∞ (u^(α−1) /(1+u^2 ))du+(1/e^2 )∙(∂^2 /∂α^2 )∣_(α=1) ∫_0 ^∞ (u^(α−1) /(1+u^2 ))du     =((9π)/(2e^2 ))+(3/e^2 )∙(∂/∂α)∣_(α=1) (π/(sin(((πα)/2))))+(1/(2e^2 ))∙(∂^2 /∂α^2 )∣_(α=1) (π/(sin(((πα)/2))))     =((9π)/(2e^2 ))−((3π^2 )/(2e^2 ))∣_(α=1) cosec(((πα)/2))cot(((πα)/2))          +(π^3 /(8e^2 ))∣_(α=1) cosec^3 (((πα)/2))+cosec(((πα)/2))cot^2 (((πα)/2))     =((9π)/(2e^2 ))+(π^3 /(8e^2 ))=(π/e^2 )((9/2)+(π^2 /( 8))), k=(9/2)+(π^2 /8)

ϕ=0ln2(ex)e4+x2dx=01+2lnx+ln2xe4+x2dx=1e201+2ln(e2u)+ln2(e2u)1+u2du=π2e2+1e204+2lnu+4+4lnu+ln2u1+u2du=π2e2+4πe2+1e206lnu+ln2u1+u2du=9π2e2+6e2αα=10uα11+u2du+1e22α2α=10uα11+u2du=9π2e2+3e2αα=1πsin(πα2)+12e22α2α=1πsin(πα2)=9π2e23π22e2α=1cosec(πα2)cot(πα2)+π38e2α=1cosec3(πα2)+cosec(πα2)cot2(πα2)=9π2e2+π38e2=πe2(92+π28),k=92+π28

Commented by Ar Brandon last updated on 06/Aug/21

It was a pleasure, Sir ��

Commented by mnjuly1970 last updated on 06/Aug/21

very nice mr brandon..

verynicemrbrandon..

Answered by Ar Brandon last updated on 06/Aug/21

Ω=∫_0 ^∞ ((ln^3 x)/(e^2 +x^2 ))dx=(1/e)∫_0 ^∞ ((ln^3 (eu))/(1+u^2 ))du      =(1/e)∫_0 ^∞ ((1+3lnu+3ln^2 u+ln^3 u)/(1+u^2 ))du      =(π/(2e))+((3π^3 )/(8e))+(1/e)∫_0 ^∞ ((ln^3 u)/(1+u^2 ))du      =(((4+3π^2 )π)/(8e))+(1/e)∙(∂^3 /∂α^3 )∣_(α=1) ∫_0 ^∞ (u^(α−1) /(1+u^2 ))du      =(((4+3π^2 )π)/(8e))+(1/e)∙(∂^3 /∂α^3 )∣_(α=1) (π/(sin(((πα)/2))))      =(((4+3π^2 )π)/(8e))−(π/(8e))∣_(α=1) (((3π)/2)cosec^2 (((πα)/2))cosec(((πα)/2))cot(((πα)/2))            +π(cosec^3 (((πα)/2))cot(((πα)/2))+(1/2)cosec(((πα)/2))cot^3 (((πα)/2)))       =(((4+3π^2 )π)/(8e))

Ω=0ln3xe2+x2dx=1e0ln3(eu)1+u2du=1e01+3lnu+3ln2u+ln3u1+u2du=π2e+3π38e+1e0ln3u1+u2du=(4+3π2)π8e+1e3α3α=10uα11+u2du=(4+3π2)π8e+1e3α3α=1πsin(πα2)=(4+3π2)π8eπ8eα=1(3π2cosec2(πα2)cosec(πα2)cot(πα2)+π(cosec3(πα2)cot(πα2)+12cosec(πα2)cot3(πα2))=(4+3π2)π8e

Commented by mnjuly1970 last updated on 06/Aug/21

bravo mr brandon...

bravomrbrandon...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com