Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1497 by Rasheed Soomro last updated on 14/Aug/15

Find complex numbers α and β such that  α^2 =β^3   and  β^2 =α^3

$$\mathrm{Find}\:\mathrm{complex}\:\mathrm{numbers}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{such}\:\mathrm{that} \\ $$$$\alpha^{\mathrm{2}} =\beta^{\mathrm{3}} \:\:\mathrm{and}\:\:\beta^{\mathrm{2}} =\alpha^{\mathrm{3}} \\ $$

Commented by 123456 last updated on 14/Aug/15

(α,β)=(0,0) is ome of these pairs

$$\left(\alpha,\beta\right)=\left(\mathrm{0},\mathrm{0}\right)\:\mathrm{is}\:\mathrm{ome}\:\mathrm{of}\:\mathrm{these}\:\mathrm{pairs} \\ $$

Commented by Rasheed Ahmad last updated on 14/Aug/15

(1,1) is an other pair.

$$\left(\mathrm{1},\mathrm{1}\right)\:{is}\:{an}\:{other}\:{pair}. \\ $$

Commented by 123456 last updated on 15/Aug/15

 { ((α^2 =β^3 )),((β^2 =α^3 )) :}  n∈N^∗    { ((α^(4n) =β^(6n) )),((β^(6n) =α^(9n) )) :}  α^(4n) =α^(9n) ⇔α^(4n) (α^(5n) −1)=0   { ((α^(6n) =β^(9n) )),((β^(4n) =α^(6n) )) :}  β^(4n) =β^(9n) ⇔β^(4n) (β^(5n) −1)=0

$$\begin{cases}{\alpha^{\mathrm{2}} =\beta^{\mathrm{3}} }\\{\beta^{\mathrm{2}} =\alpha^{\mathrm{3}} }\end{cases} \\ $$$${n}\in\mathbb{N}^{\ast} \\ $$$$\begin{cases}{\alpha^{\mathrm{4}{n}} =\beta^{\mathrm{6}{n}} }\\{\beta^{\mathrm{6}{n}} =\alpha^{\mathrm{9}{n}} }\end{cases} \\ $$$$\alpha^{\mathrm{4}{n}} =\alpha^{\mathrm{9}{n}} \Leftrightarrow\alpha^{\mathrm{4}{n}} \left(\alpha^{\mathrm{5}{n}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\begin{cases}{\alpha^{\mathrm{6}{n}} =\beta^{\mathrm{9}{n}} }\\{\beta^{\mathrm{4}{n}} =\alpha^{\mathrm{6}{n}} }\end{cases} \\ $$$$\beta^{\mathrm{4}{n}} =\beta^{\mathrm{9}{n}} \Leftrightarrow\beta^{\mathrm{4}{n}} \left(\beta^{\mathrm{5}{n}} −\mathrm{1}\right)=\mathrm{0} \\ $$

Commented by Rasheed Soomro last updated on 16/Aug/15

α^2 =β^3   (α^2 )^2 =(β^( 3) )^2   α^4 =(β^( 2) )^3   α^4 =(α^3 )^3       [substituting β^( 2) =α^3 ]  α^4 =α^9   Assuming α≠0,dividing by α^4   α^5 =1⇒α=^5  (√1)  Similarily ,  β^( 5) =1⇒β=^5 (√1)  ∴ α and β both are 5th roots of unity.  We know that   nth root of unity=(cos((2π)/n)+ı sin((2π)/n) )^k   , k=0,1,2,...(n−1)  5th root of unity=(cos((2π)/5)+ı sin((2π)/5) )^k   , k=0,1,2,...4  Let cos((2π)/5)+ı sin((2π)/5)  =ω  5th root of unity=1,ω,ω^2 ,ω^3 ,ω^4       (in order)  Square of ∽         =1,ω^2 ,ω^4 ,ω,ω^3        (in order)  Cube of ∽             =1,w^3 ,ω,ω^4 ,ω^2         (in order)  (𝛚^k_1  )^2  = (𝛚^k_2  )^3      k_1  , k_2  = 0,1,2,3,4  𝛚^(2k_1 (mod 5))  =𝛚^(3k_2 (mod 5))   For 2k_1 (mod 5)=3k_2 (mod 5)  :  (α,β)=(ω^k_1   , ω^k_2  )=(ω^k_2  , ω^k_1  )  (α,β)={(1,1),(ω,ω^4 ),(ω^4 ,ω),(ω^2 ,ω^3 ),(ω^3 ,ω^2 )}

$$\alpha^{\mathrm{2}} =\beta^{\mathrm{3}} \\ $$$$\left(\alpha^{\mathrm{2}} \right)^{\mathrm{2}} =\left(\beta^{\:\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$\alpha^{\mathrm{4}} =\left(\beta^{\:\mathrm{2}} \right)^{\mathrm{3}} \\ $$$$\alpha^{\mathrm{4}} =\left(\alpha^{\mathrm{3}} \right)^{\mathrm{3}} \:\:\:\:\:\:\left[{substituting}\:\beta^{\:\mathrm{2}} =\alpha^{\mathrm{3}} \right] \\ $$$$\alpha^{\mathrm{4}} =\alpha^{\mathrm{9}} \\ $$$${Assuming}\:\alpha\neq\mathrm{0},{dividing}\:{by}\:\alpha^{\mathrm{4}} \\ $$$$\alpha^{\mathrm{5}} =\mathrm{1}\Rightarrow\alpha=^{\mathrm{5}} \:\sqrt{\mathrm{1}} \\ $$$${Similarily}\:, \\ $$$$\beta^{\:\mathrm{5}} =\mathrm{1}\Rightarrow\beta=^{\mathrm{5}} \sqrt{\mathrm{1}} \\ $$$$\therefore\:\alpha\:{and}\:\beta\:{both}\:{are}\:\mathrm{5}{th}\:{roots}\:{of}\:{unity}. \\ $$$${We}\:{know}\:{that}\: \\ $$$${nth}\:{root}\:{of}\:{unity}=\left({cos}\frac{\mathrm{2}\pi}{{n}}+\imath\:{sin}\frac{\mathrm{2}\pi}{{n}}\:\right)^{{k}} \:\:,\:{k}=\mathrm{0},\mathrm{1},\mathrm{2},...\left({n}−\mathrm{1}\right) \\ $$$$\mathrm{5}{th}\:{root}\:{of}\:{unity}=\left({cos}\frac{\mathrm{2}\pi}{\mathrm{5}}+\imath\:{sin}\frac{\mathrm{2}\pi}{\mathrm{5}}\:\right)^{{k}} \:\:,\:{k}=\mathrm{0},\mathrm{1},\mathrm{2},...\mathrm{4} \\ $$$${Let}\:{cos}\frac{\mathrm{2}\pi}{\mathrm{5}}+\imath\:{sin}\frac{\mathrm{2}\pi}{\mathrm{5}}\:\:=\omega \\ $$$$\mathrm{5}{th}\:{root}\:{of}\:{unity}=\mathrm{1},\omega,\omega^{\mathrm{2}} ,\omega^{\mathrm{3}} ,\omega^{\mathrm{4}} \:\:\:\:\:\:\left({in}\:{order}\right) \\ $$$${Square}\:{of}\:\backsim\:\:\:\:\:\:\:\:\:=\mathrm{1},\omega^{\mathrm{2}} ,\omega^{\mathrm{4}} ,\omega,\omega^{\mathrm{3}} \:\:\:\:\:\:\:\left({in}\:{order}\right) \\ $$$${Cube}\:{of}\:\backsim\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1},{w}^{\mathrm{3}} ,\omega,\omega^{\mathrm{4}} ,\omega^{\mathrm{2}} \:\:\:\:\:\:\:\:\left({in}\:{order}\right) \\ $$$$\left(\boldsymbol{\omega}^{{k}_{\mathrm{1}} } \right)^{\mathrm{2}} \:=\:\left(\boldsymbol{\omega}^{{k}_{\mathrm{2}} } \right)^{\mathrm{3}} \:\:\:\:\:{k}_{\mathrm{1}} \:,\:{k}_{\mathrm{2}} \:=\:\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4} \\ $$$$\boldsymbol{\omega}^{\mathrm{2}{k}_{\mathrm{1}} \left({mod}\:\mathrm{5}\right)} \:=\boldsymbol{\omega}^{\mathrm{3}{k}_{\mathrm{2}} \left({mod}\:\mathrm{5}\right)} \\ $$$${For}\:\mathrm{2}{k}_{\mathrm{1}} \left({mod}\:\mathrm{5}\right)=\mathrm{3}{k}_{\mathrm{2}} \left({mod}\:\mathrm{5}\right)\:\:: \\ $$$$\left(\alpha,\beta\right)=\left(\omega^{{k}_{\mathrm{1}} } \:,\:\omega^{{k}_{\mathrm{2}} } \right)=\left(\omega^{{k}_{\mathrm{2}} } ,\:\omega^{{k}_{\mathrm{1}} } \right) \\ $$$$\left(\alpha,\beta\right)=\left\{\left(\mathrm{1},\mathrm{1}\right),\left(\omega,\omega^{\mathrm{4}} \right),\left(\omega^{\mathrm{4}} ,\omega\right),\left(\omega^{\mathrm{2}} ,\omega^{\mathrm{3}} \right),\left(\omega^{\mathrm{3}} ,\omega^{\mathrm{2}} \right)\right\} \\ $$$$ \\ $$

Commented by 123456 last updated on 15/Aug/15

good approach :)

$$\left.\mathrm{good}\:\mathrm{approach}\::\right) \\ $$

Commented by Rasheed Soomro last updated on 16/Aug/15

Thanks. Please comment, although in negative , on my   answers to Q−1448  and  Q−1466. If  the comments be  positive I will gain confidence and if they are negative  I will learn something. So please.....

$$\boldsymbol{\mathrm{Thanks}}.\:\mathrm{Please}\:\mathrm{comment},\:\boldsymbol{\mathrm{although}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{negative}}\:,\:{on}\:{my}\: \\ $$$${answers}\:{to}\:{Q}−\mathrm{1448}\:\:{and}\:\:{Q}−\mathrm{1466}.\:{If}\:\:{the}\:{comments}\:{be} \\ $$$${positive}\:{I}\:{will}\:{gain}\:{confidence}\:{and}\:{if}\:{they}\:{are}\:{negative} \\ $$$${I}\:{will}\:{learn}\:{something}.\:{So}\:{please}..... \\ $$

Answered by 123456 last updated on 15/Aug/15

 { ((α^2 =β^3 )),((β^2 =α^3 )) :}⇒ { ((α^4 =β^6 )),((β^6 =α^9 )) :}  α^4 =α^9   α^9 −α^4 =0  α^4 (α^5 −1)=0  α=0∨α=(1)^(1/5)   α=0⇒ { ((β^3 =0)),((β^2 =0)) :}⇒β=0  α=1⇒ { ((β^3 =1)),((β^2 =1)) :}⇒ { ((β=1∨β=−(1/2)+((√3)/2)ı∨β=−(1/2)−((√3)/2)ı)),((β=1∨β=−1)) :}⇒β=1  α=e^(72°ı) ⇒ { ((β^3 =e^(144°ı) )),((β^2 =e^(216°ı) )) :}⇒ { ((β=e^(48°ı) ∨β=e^(168°ı) ∨β=e^(288°ı) )),((β=e^(108°ı) ∨β=e^(288°ı) )) :}⇒β=e^(288°ı)   α=e^(144°ı) ⇒ { ((β^3 =e^(288°ı) )),((β^2 =e^(72°ı) )) :}⇒ { ((β=e^(96°ı) ∨β=e^(216°ı) ∨β=e^(336°ı) )),((β=e^(36°ı) ∨β=e^(216°ı) )) :}⇒β=e^(216°ı)   α=e^(216°ı) ⇒ { ((β^3 =e^(72°ı) )),((β^2 =e^(288°ı) )) :}⇒ { ((β=e^(24°ı) ∨β=e^(144°ı) ∨β=e^(264°ı) )),((β=e^(144°ı) ∨β=e^(324°ı) )) :}  α=e^(288°ı) ⇒ { ((β^3 =e^(216°ı) )),((β^2 =e^(144°ı) )) :}⇒ { ((β=e^(72°ı) ∨β=e^(192°ı) ∨β=e^(312°ı) )),((β=e^(72°ı) ∨β=e^(252°ı) )) :}⇒β=e^(72°ı)   S={(0,0),(1,1),(e^(72°ı) ,e^(288°ı) ),(e^(144°ı) ,e^(216°ı) ),(e^(216°ı) ,e^(144°ı) ),(e^(288°ı) ,e^(72°ı) )}

$$\begin{cases}{\alpha^{\mathrm{2}} =\beta^{\mathrm{3}} }\\{\beta^{\mathrm{2}} =\alpha^{\mathrm{3}} }\end{cases}\Rightarrow\begin{cases}{\alpha^{\mathrm{4}} =\beta^{\mathrm{6}} }\\{\beta^{\mathrm{6}} =\alpha^{\mathrm{9}} }\end{cases} \\ $$$$\alpha^{\mathrm{4}} =\alpha^{\mathrm{9}} \\ $$$$\alpha^{\mathrm{9}} −\alpha^{\mathrm{4}} =\mathrm{0} \\ $$$$\alpha^{\mathrm{4}} \left(\alpha^{\mathrm{5}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\alpha=\mathrm{0}\vee\alpha=\sqrt[{\mathrm{5}}]{\mathrm{1}} \\ $$$$\alpha=\mathrm{0}\Rightarrow\begin{cases}{\beta^{\mathrm{3}} =\mathrm{0}}\\{\beta^{\mathrm{2}} =\mathrm{0}}\end{cases}\Rightarrow\beta=\mathrm{0} \\ $$$$\alpha=\mathrm{1}\Rightarrow\begin{cases}{\beta^{\mathrm{3}} =\mathrm{1}}\\{\beta^{\mathrm{2}} =\mathrm{1}}\end{cases}\Rightarrow\begin{cases}{\beta=\mathrm{1}\vee\beta=−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\imath\vee\beta=−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\imath}\\{\beta=\mathrm{1}\vee\beta=−\mathrm{1}}\end{cases}\Rightarrow\beta=\mathrm{1} \\ $$$$\alpha={e}^{\mathrm{72}°\imath} \Rightarrow\begin{cases}{\beta^{\mathrm{3}} ={e}^{\mathrm{144}°\imath} }\\{\beta^{\mathrm{2}} ={e}^{\mathrm{216}°\imath} }\end{cases}\Rightarrow\begin{cases}{\beta={e}^{\mathrm{48}°\imath} \vee\beta={e}^{\mathrm{168}°\imath} \vee\beta={e}^{\mathrm{288}°\imath} }\\{\beta={e}^{\mathrm{108}°\imath} \vee\beta={e}^{\mathrm{288}°\imath} }\end{cases}\Rightarrow\beta={e}^{\mathrm{288}°\imath} \\ $$$$\alpha={e}^{\mathrm{144}°\imath} \Rightarrow\begin{cases}{\beta^{\mathrm{3}} ={e}^{\mathrm{288}°\imath} }\\{\beta^{\mathrm{2}} ={e}^{\mathrm{72}°\imath} }\end{cases}\Rightarrow\begin{cases}{\beta={e}^{\mathrm{96}°\imath} \vee\beta={e}^{\mathrm{216}°\imath} \vee\beta={e}^{\mathrm{336}°\imath} }\\{\beta={e}^{\mathrm{36}°\imath} \vee\beta={e}^{\mathrm{216}°\imath} }\end{cases}\Rightarrow\beta={e}^{\mathrm{216}°\imath} \\ $$$$\alpha={e}^{\mathrm{216}°\imath} \Rightarrow\begin{cases}{\beta^{\mathrm{3}} ={e}^{\mathrm{72}°\imath} }\\{\beta^{\mathrm{2}} ={e}^{\mathrm{288}°\imath} }\end{cases}\Rightarrow\begin{cases}{\beta={e}^{\mathrm{24}°\imath} \vee\beta={e}^{\mathrm{144}°\imath} \vee\beta={e}^{\mathrm{264}°\imath} }\\{\beta={e}^{\mathrm{144}°\imath} \vee\beta={e}^{\mathrm{324}°\imath} }\end{cases} \\ $$$$\alpha={e}^{\mathrm{288}°\imath} \Rightarrow\begin{cases}{\beta^{\mathrm{3}} ={e}^{\mathrm{216}°\imath} }\\{\beta^{\mathrm{2}} ={e}^{\mathrm{144}°\imath} }\end{cases}\Rightarrow\begin{cases}{\beta={e}^{\mathrm{72}°\imath} \vee\beta={e}^{\mathrm{192}°\imath} \vee\beta={e}^{\mathrm{312}°\imath} }\\{\beta={e}^{\mathrm{72}°\imath} \vee\beta={e}^{\mathrm{252}°\imath} }\end{cases}\Rightarrow\beta={e}^{\mathrm{72}°\imath} \\ $$$$\mathrm{S}=\left\{\left(\mathrm{0},\mathrm{0}\right),\left(\mathrm{1},\mathrm{1}\right),\left({e}^{\mathrm{72}°\imath} ,{e}^{\mathrm{288}°\imath} \right),\left({e}^{\mathrm{144}°\imath} ,{e}^{\mathrm{216}°\imath} \right),\left({e}^{\mathrm{216}°\imath} ,{e}^{\mathrm{144}°\imath} \right),\left({e}^{\mathrm{288}°\imath} ,{e}^{\mathrm{72}°\imath} \right)\right\} \\ $$

Commented by Rasheed Ahmad last updated on 15/Aug/15

(Rasheed Soomro)  Excellent Sir!

$$\left({Rasheed}\:{Soomro}\right) \\ $$$$\mathrm{Excellent}\:\mathrm{Sir}! \\ $$

Commented by 123456 last updated on 15/Aug/15

i know  x°=x(π/(180))(°→rad)  e^(xı) =cos x+ısin x(x are mesuared in rad)  e^((x+360°k)ı) =e^(xı) ,k∈Z

$$\mathrm{i}\:\mathrm{know} \\ $$$${x}°={x}\frac{\pi}{\mathrm{180}}\left(°\rightarrow{rad}\right) \\ $$$${e}^{{x}\imath} =\mathrm{cos}\:{x}+\imath\mathrm{sin}\:{x}\left({x}\:\mathrm{are}\:\mathrm{mesuared}\:\mathrm{in}\:\mathrm{rad}\right) \\ $$$${e}^{\left({x}+\mathrm{360}°{k}\right)\imath} ={e}^{{x}\imath} ,{k}\in\mathbb{Z} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com