Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 149739 by iloveisrael last updated on 07/Aug/21

Answered by Olaf_Thorendsen last updated on 07/Aug/21

λ = ∫_0 ^π xsin^9 x dx   (1)  λ = ∫_π ^0 (π−u)sin^9 (π−u) (−du)  λ = ∫_0 ^π (π−u)sin^9 u du   (2)  (1)+(2) : 2λ = π∫_0 ^π sin^9 x dx  λ = (π/2)∫_0 ^(π/2) sin^9 x dx+(π/2)∫_(π/2) ^π sin^9 x dx  λ = (π/2)∫_0 ^(π/2) sin^9 x dx+(π/2)∫_0 ^(π/2) sin^9 (t+(π/2)) dt  λ = (π/2)∫_0 ^(π/2) sin^9 x dx+(π/2)∫_0 ^(π/2) cos^9 t dt  λ = (π/2)W_9 +(π/2)W_9  = πW_9  (Wallis)  W_(2p+1)  = (((2^p p!)^2 )/((2p+1)!))  W_9  = W_(2×4+1)  = (((2^4 4!)^2 )/(9!)) = ((128)/(315))  ⇒ λ = ((128π)/(315))

λ=0πxsin9xdx(1)λ=π0(πu)sin9(πu)(du)λ=0π(πu)sin9udu(2)(1)+(2):2λ=π0πsin9xdxλ=π20π2sin9xdx+π2π2πsin9xdxλ=π20π2sin9xdx+π20π2sin9(t+π2)dtλ=π20π2sin9xdx+π20π2cos9tdtλ=π2W9+π2W9=πW9(Wallis)W2p+1=(2pp!)2(2p+1)!W9=W2×4+1=(244!)29!=128315λ=128π315

Answered by mathmax by abdo last updated on 07/Aug/21

Ψ=∫_0 ^π  x sin^9 x dx ⇒Ψ=∫_0 ^π  x(((e^(ix) −e^(−ix) )/(2i)))^9  dx  =(1/((2i)^9 ))∫_0 ^π x(Σ_(k=0) ^9  C_9 ^k  (e^(ix) )^k (−e^(−ix) )^(9−k) )dx  =(1/((2i)^9 ))Σ_(k=0) ^9  C_9 ^k (−1)^(9−k)  ∫_0 ^π x e^(ikx)  e^((k−9)ix) dx  =−(1/((2i)^9 ))Σ_(k=0) ^9  (−1)^k  C_9 ^k  u_k   u_k =∫_0 ^π x e^((2k−9)ix)  dx =[(x/((2k−9)i))e^((2k−9)ix) ]_0 ^π −∫_0 ^π  (1/((2k−9)i))e^((2k−9)ix) dx  =(π/((2k−9)i))e^((2k−9)iπ)  −(1/(((2k−9)i)^2 ))[e^((2k−9)ix) ]_0 ^π   =−(π/((2k−9)i))+(1/((2k−9)^2 ))(−2) ⇒  Ψ=−(1/((2i)^9 ))Σ_(k=0) ^9 (−1)^k  C_9 ^k (−(π/((2k−9)i))−(2/((2k−9)^2 )))....

Ψ=0πxsin9xdxΨ=0πx(eixeix2i)9dx=1(2i)90πx(k=09C9k(eix)k(eix)9k)dx=1(2i)9k=09C9k(1)9k0πxeikxe(k9)ixdx=1(2i)9k=09(1)kC9kukuk=0πxe(2k9)ixdx=[x(2k9)ie(2k9)ix]0π0π1(2k9)ie(2k9)ixdx=π(2k9)ie(2k9)iπ1((2k9)i)2[e(2k9)ix]0π=π(2k9)i+1(2k9)2(2)Ψ=1(2i)9k=09(1)kC9k(π(2k9)i2(2k9)2)....

Answered by gsk2684 last updated on 07/Aug/21

λ+λ=∫_0 ^π xsin^9 x dx+∫_0 ^π (π−x)sin^9 (π−x) dx  2λ=∫_0 ^π xsin^9 x dx+∫_0 ^π (π−x)sin^9 x dx  2λ=∫_0 ^π xsin^9 x dx+π∫_0 ^π sin^9 x dx−∫_0 ^π xsin^9 x dx  2λ=π∫_0 ^π sin^9 xdx  2λ=2π∫_0 ^(π/2) sin^9 xdx  λ=π (8/9) (6/7) (4/5) (2/3) 1

λ+λ=π0xsin9xdx+π0(πx)sin9(πx)dx2λ=π0xsin9xdx+π0(πx)sin9xdx2λ=π0xsin9xdx+ππ0sin9xdxπ0xsin9xdx2λ=ππ0sin9xdx2λ=2ππ20sin9xdxλ=π896745231

Terms of Service

Privacy Policy

Contact: info@tinkutara.com