All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 149739 by iloveisrael last updated on 07/Aug/21
Answered by Olaf_Thorendsen last updated on 07/Aug/21
λ=∫0πxsin9xdx(1)λ=∫π0(π−u)sin9(π−u)(−du)λ=∫0π(π−u)sin9udu(2)(1)+(2):2λ=π∫0πsin9xdxλ=π2∫0π2sin9xdx+π2∫π2πsin9xdxλ=π2∫0π2sin9xdx+π2∫0π2sin9(t+π2)dtλ=π2∫0π2sin9xdx+π2∫0π2cos9tdtλ=π2W9+π2W9=πW9(Wallis)W2p+1=(2pp!)2(2p+1)!W9=W2×4+1=(244!)29!=128315⇒λ=128π315
Answered by mathmax by abdo last updated on 07/Aug/21
Ψ=∫0πxsin9xdx⇒Ψ=∫0πx(eix−e−ix2i)9dx=1(2i)9∫0πx(∑k=09C9k(eix)k(−e−ix)9−k)dx=1(2i)9∑k=09C9k(−1)9−k∫0πxeikxe(k−9)ixdx=−1(2i)9∑k=09(−1)kC9kukuk=∫0πxe(2k−9)ixdx=[x(2k−9)ie(2k−9)ix]0π−∫0π1(2k−9)ie(2k−9)ixdx=π(2k−9)ie(2k−9)iπ−1((2k−9)i)2[e(2k−9)ix]0π=−π(2k−9)i+1(2k−9)2(−2)⇒Ψ=−1(2i)9∑k=09(−1)kC9k(−π(2k−9)i−2(2k−9)2)....
Answered by gsk2684 last updated on 07/Aug/21
λ+λ=∫π0xsin9xdx+∫π0(π−x)sin9(π−x)dx2λ=∫π0xsin9xdx+∫π0(π−x)sin9xdx2λ=∫π0xsin9xdx+π∫π0sin9xdx−∫π0xsin9xdx2λ=π∫π0sin9xdx2λ=2π∫π20sin9xdxλ=π896745231
Terms of Service
Privacy Policy
Contact: info@tinkutara.com