Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 149894 by ajfour last updated on 08/Aug/21

Commented by ajfour last updated on 08/Aug/21

Find minimum and maximum  values for the side of equilateral  triangle shown.

$${Find}\:{minimum}\:{and}\:{maximum} \\ $$$${values}\:{for}\:{the}\:{side}\:{of}\:{equilateral} \\ $$$${triangle}\:{shown}. \\ $$

Answered by mr W last updated on 08/Aug/21

Commented by mr W last updated on 08/Aug/21

Commented by mr W last updated on 08/Aug/21

P(h+r cos θ,k+r sin θ)  eqn. of AP:  y=k+r sin θ+m_1 x  eqn. of BP:  y=k+r sin θ+mx  tan (π/3)=((m_1 −m)/(1+m_1 m))=(√3)  ⇒m_1 =((m+(√3))/(1−(√3)m))  s=(h+r cos θ)(√(1+m^2 ))  s=(k+r sin θ)(√(1+(1/m_1 ^2 )))  with α=(√(1+m^2 )), β=(√(1+(1/m_1 ^2 )))  (h+r cos θ)α=(k+r sin θ)β  r(β sin θ−α cos θ)=αh−βk  r(√(α^2 +β^2 )) sin (θ−tan^(−1) (α/β))=αh−βk  sin (θ−tan^(−1) (α/β))=((αh−βk)/(r(√(α^2 +β^2 ))))  ⇒θ=tan^(−1) (α/β)+sin^(−1) (((αh−βk)/(r(√(α^2 +β^2 ))))) or  ⇒θ=tan^(−1) (α/β)+π−sin^(−1) (((αh−βk)/(r(√(α^2 +β^2 )))))

$${P}\left({h}+{r}\:\mathrm{cos}\:\theta,{k}+{r}\:\mathrm{sin}\:\theta\right) \\ $$$${eqn}.\:{of}\:{AP}: \\ $$$${y}={k}+{r}\:\mathrm{sin}\:\theta+{m}_{\mathrm{1}} {x} \\ $$$${eqn}.\:{of}\:{BP}: \\ $$$${y}={k}+{r}\:\mathrm{sin}\:\theta+{mx} \\ $$$$\mathrm{tan}\:\frac{\pi}{\mathrm{3}}=\frac{{m}_{\mathrm{1}} −{m}}{\mathrm{1}+{m}_{\mathrm{1}} {m}}=\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{m}_{\mathrm{1}} =\frac{{m}+\sqrt{\mathrm{3}}}{\mathrm{1}−\sqrt{\mathrm{3}}{m}} \\ $$$${s}=\left({h}+{r}\:\mathrm{cos}\:\theta\right)\sqrt{\mathrm{1}+{m}^{\mathrm{2}} } \\ $$$${s}=\left({k}+{r}\:\mathrm{sin}\:\theta\right)\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{m}_{\mathrm{1}} ^{\mathrm{2}} }} \\ $$$${with}\:\alpha=\sqrt{\mathrm{1}+{m}^{\mathrm{2}} },\:\beta=\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{m}_{\mathrm{1}} ^{\mathrm{2}} }} \\ $$$$\left({h}+{r}\:\mathrm{cos}\:\theta\right)\alpha=\left({k}+{r}\:\mathrm{sin}\:\theta\right)\beta \\ $$$${r}\left(\beta\:\mathrm{sin}\:\theta−\alpha\:\mathrm{cos}\:\theta\right)=\alpha{h}−\beta{k} \\ $$$${r}\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }\:\mathrm{sin}\:\left(\theta−\mathrm{tan}^{−\mathrm{1}} \frac{\alpha}{\beta}\right)=\alpha{h}−\beta{k} \\ $$$$\mathrm{sin}\:\left(\theta−\mathrm{tan}^{−\mathrm{1}} \frac{\alpha}{\beta}\right)=\frac{\alpha{h}−\beta{k}}{{r}\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }} \\ $$$$\Rightarrow\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\alpha}{\beta}+\mathrm{sin}^{−\mathrm{1}} \left(\frac{\alpha{h}−\beta{k}}{{r}\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }}\right)\:{or} \\ $$$$\Rightarrow\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\alpha}{\beta}+\pi−\mathrm{sin}^{−\mathrm{1}} \left(\frac{\alpha{h}−\beta{k}}{{r}\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }}\right) \\ $$

Commented by ajfour last updated on 08/Aug/21

sir m, m_1   stand undetermined.

$${sir}\:{m},\:{m}_{\mathrm{1}} \:\:{stand}\:{undetermined}. \\ $$

Commented by mr W last updated on 08/Aug/21

i tried to find the length s in terms of  m in following way:  m_1 =((m+(√3))/(1−(√3)m))  α=(√(1+m^2 )), β=(√(1+(1/m_1 ^2 )))  θ=tan^(−1) (α/β)+sin^(−1) (((αh−βk)/(r(√(α^2 +β^2 ))))) or  θ=tan^(−1) (α/β)+π−sin^(−1) (((αh−βk)/(r(√(α^2 +β^2 )))))  s=(h+r cos θ)(√(1+m^2 ))  then graphically find the maximum  and minimum of s.

$${i}\:{tried}\:{to}\:{find}\:{the}\:{length}\:{s}\:{in}\:{terms}\:{of} \\ $$$${m}\:{in}\:{following}\:{way}: \\ $$$${m}_{\mathrm{1}} =\frac{{m}+\sqrt{\mathrm{3}}}{\mathrm{1}−\sqrt{\mathrm{3}}{m}} \\ $$$$\alpha=\sqrt{\mathrm{1}+{m}^{\mathrm{2}} },\:\beta=\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{m}_{\mathrm{1}} ^{\mathrm{2}} }} \\ $$$$\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\alpha}{\beta}+\mathrm{sin}^{−\mathrm{1}} \left(\frac{\alpha{h}−\beta{k}}{{r}\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }}\right)\:{or} \\ $$$$\theta=\mathrm{tan}^{−\mathrm{1}} \frac{\alpha}{\beta}+\pi−\mathrm{sin}^{−\mathrm{1}} \left(\frac{\alpha{h}−\beta{k}}{{r}\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }}\right) \\ $$$${s}=\left({h}+{r}\:\mathrm{cos}\:\theta\right)\sqrt{\mathrm{1}+{m}^{\mathrm{2}} } \\ $$$${then}\:{graphically}\:{find}\:{the}\:{maximum} \\ $$$${and}\:{minimum}\:{of}\:{s}. \\ $$

Commented by mr W last updated on 08/Aug/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com