Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 150058 by mathdanisur last updated on 09/Aug/21

Solve the equation:  cos^4 (x) + i sin^4 (x) = 4e^(4ix)

Solvetheequation:cos4(x)+isin4(x)=4e4ix

Commented by MJS_new last updated on 10/Aug/21

I found these (n∈Z):  x≈nπ+.866946376+.432060893i  x≈nπ+.00142216354+.301698277i  x≈nπ−.768959527+.828028492i  x≈nπ−1.26957042+.336555887i

Ifoundthese(nZ):xnπ+.866946376+.432060893ixnπ+.00142216354+.301698277ixnπ.768959527+.828028492ixnπ1.26957042+.336555887i

Commented by mathdanisur last updated on 10/Aug/21

Thank you Ser

ThankyouSer

Answered by MJS_new last updated on 10/Aug/21

((√2)/4)≤∣cos^4  x +i sin^4  x∣≤1  ∣4e^(4ix) ∣=4  ⇒ no solution ∈R

24⩽∣cos4x+isin4x∣⩽14e4ix∣=4nosolutionR

Commented by mathdanisur last updated on 09/Aug/21

Thankyou Ser  Dear Ser, no solution in real numbers, but it  has a complex number solution

ThankyouSerDearSer,nosolutioninrealnumbers,butithasacomplexnumbersolution

Answered by MJS_new last updated on 10/Aug/21

cos^4  x +i sin^4  x =4e^(4ix)   cos^4  x +i sin^4  x =4cos 4x +4i sin 4x  let t=tan x  (1/((t^2 +1)^2 ))+(t^4 /((t^2 +1)^2 ))i=((4(t^2 −2t−1)(t^2 +2t−1))/((t^2 +1)^2 ))−((16t(t−1)(t+1))/((t^2 +1)^2 ))i  this leads to  t^4 +((16(1−4i))/(17))t^3 −((24(4+i))/(17))t^2 −((16(1−4i))/(17))t+((3(4+i))/(17))=0  I found no useful exact solution  t_1 ≈.799102359+.790210727i  t_2 ≈.00130018452+.292866540i  t_3 ≈−.363754201+.918561793i  t_4 ≈−1.37782481+1.76306682i  t=tan x ⇔ x=nπ+arctan t  ⇒ the solutions I posted above

cos4x+isin4x=4e4ixcos4x+isin4x=4cos4x+4isin4xlett=tanx1(t2+1)2+t4(t2+1)2i=4(t22t1)(t2+2t1)(t2+1)216t(t1)(t+1)(t2+1)2ithisleadstot4+16(14i)17t324(4+i)17t216(14i)17t+3(4+i)17=0Ifoundnousefulexactsolutiont1.799102359+.790210727it2.00130018452+.292866540it3.363754201+.918561793it41.37782481+1.76306682it=tanxx=nπ+arctantthesolutionsIpostedabove

Commented by mathdanisur last updated on 10/Aug/21

Thank You Ser

ThankYouSer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com