Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 150177 by mr W last updated on 10/Aug/21

Commented by mr W last updated on 10/Aug/21

an other way to solve Q149894

$${an}\:{other}\:{way}\:{to}\:{solve}\:{Q}\mathrm{149894} \\ $$

Commented by mr W last updated on 10/Aug/21

the locus of the upper right vertex  of the equilateral of side length s  is an ellipse with major axis at 45°  with a=((((√3)+1)s)/2), b=((((√3)−1)s)/2).  therefore the question now  is  to find  the two ellipses which tangent the  circle.

$${the}\:{locus}\:{of}\:{the}\:{upper}\:{right}\:{vertex} \\ $$$${of}\:{the}\:{equilateral}\:{of}\:{side}\:{length}\:{s} \\ $$$${is}\:{an}\:{ellipse}\:{with}\:{major}\:{axis}\:{at}\:\mathrm{45}° \\ $$$${with}\:{a}=\frac{\left(\sqrt{\mathrm{3}}+\mathrm{1}\right){s}}{\mathrm{2}},\:{b}=\frac{\left(\sqrt{\mathrm{3}}−\mathrm{1}\right){s}}{\mathrm{2}}. \\ $$$${therefore}\:{the}\:{question}\:{now}\:\:{is}\:\:{to}\:{find} \\ $$$${the}\:{two}\:{ellipses}\:{which}\:{tangent}\:{the} \\ $$$${circle}. \\ $$

Commented by mr W last updated on 10/Aug/21

Commented by mr W last updated on 11/Aug/21

s=side length of equilateral  a=(((√3)+1)/2)s=αs  b=(((√3)−1)/2)s=βs  (x^2 /α^2 )+(y^2 /β^2 )=s^2   (x−p)^2 +(y−q)^2 =r^2   say P(αs cos θ,βs sin θ)  tan ϕ=(β/( α tan θ))  for s_(min) :  x_C =αs cos θ+r sin ϕ  x_C =αs cos θ+r (β/( (√(β^2 +α^2 tan^2  θ))))=p  ⇒s_(min) =(1/(α cos θ))(p−r (β/( (√(β^2 +α^2 tan^2  θ)))))  y_C =βs sin θ+r cos ϕ  y_C =βs sin θ+r ((αtan θ)/( (√(β^2 +α^2 tan^2  θ))))=q  ⇒s_(min) =(1/(β sin θ))(q−r ((αtan θ)/( (√(β^2 +α^2 tan^2  θ)))))  (1/(α cos θ))(p−r (β/( (√(β^2 +α^2 tan^2  θ)))))=(1/(β sin θ))(q−r ((αtan θ)/( (√(β^2 +α^2 tan^2  θ)))))  ⇒((αq)/(tan θ))−(((α^2 −β^2 )r)/( (√(β^2 +α^2 tan^2  θ))))=βp    similarly for s_(max) :  s_(max) =(1/(α cos θ))(p+r (β/( (√(β^2 +α^2 tan^2  θ)))))  s_(max) =(1/(β sin θ))(q+r ((αtan θ)/( (√(β^2 +α^2 tan^2  θ)))))  ((αq)/(tan θ))+(((α^2 −β^2 )r)/( (√(β^2 +α^2 tan^2  θ))))=βp    with p=((k+h)/( (√2))), q=((k−h)/( (√2)))    example: h=6, k=8, r=2  p=7(√2), q=(√2)  s_(max) =11.9086 ✓  s_(min) =6.0829 ✓

$${s}={side}\:{length}\:{of}\:{equilateral} \\ $$$${a}=\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}}{s}=\alpha{s} \\ $$$${b}=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}}{s}=\beta{s} \\ $$$$\frac{{x}^{\mathrm{2}} }{\alpha^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\beta^{\mathrm{2}} }={s}^{\mathrm{2}} \\ $$$$\left({x}−{p}\right)^{\mathrm{2}} +\left({y}−{q}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${say}\:{P}\left(\alpha{s}\:\mathrm{cos}\:\theta,\beta{s}\:\mathrm{sin}\:\theta\right) \\ $$$$\mathrm{tan}\:\varphi=\frac{\beta}{\:\alpha\:\mathrm{tan}\:\theta} \\ $$$${for}\:{s}_{{min}} : \\ $$$${x}_{{C}} =\alpha{s}\:\mathrm{cos}\:\theta+{r}\:\mathrm{sin}\:\varphi \\ $$$${x}_{{C}} =\alpha{s}\:\mathrm{cos}\:\theta+{r}\:\frac{\beta}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}={p} \\ $$$$\Rightarrow{s}_{{min}} =\frac{\mathrm{1}}{\alpha\:\mathrm{cos}\:\theta}\left({p}−{r}\:\frac{\beta}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}\right) \\ $$$${y}_{{C}} =\beta{s}\:\mathrm{sin}\:\theta+{r}\:\mathrm{cos}\:\varphi \\ $$$${y}_{{C}} =\beta{s}\:\mathrm{sin}\:\theta+{r}\:\frac{\alpha\mathrm{tan}\:\theta}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}={q} \\ $$$$\Rightarrow{s}_{{min}} =\frac{\mathrm{1}}{\beta\:\mathrm{sin}\:\theta}\left({q}−{r}\:\frac{\alpha\mathrm{tan}\:\theta}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}\right) \\ $$$$\frac{\mathrm{1}}{\alpha\:\mathrm{cos}\:\theta}\left({p}−{r}\:\frac{\beta}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}\right)=\frac{\mathrm{1}}{\beta\:\mathrm{sin}\:\theta}\left({q}−{r}\:\frac{\alpha\mathrm{tan}\:\theta}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}\right) \\ $$$$\Rightarrow\frac{\alpha{q}}{\mathrm{tan}\:\theta}−\frac{\left(\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right){r}}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}=\beta{p} \\ $$$$ \\ $$$${similarly}\:{for}\:{s}_{{max}} : \\ $$$${s}_{{max}} =\frac{\mathrm{1}}{\alpha\:\mathrm{cos}\:\theta}\left({p}+{r}\:\frac{\beta}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}\right) \\ $$$${s}_{{max}} =\frac{\mathrm{1}}{\beta\:\mathrm{sin}\:\theta}\left({q}+{r}\:\frac{\alpha\mathrm{tan}\:\theta}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}\right) \\ $$$$\frac{\alpha{q}}{\mathrm{tan}\:\theta}+\frac{\left(\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right){r}}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}=\beta{p} \\ $$$$ \\ $$$${with}\:{p}=\frac{{k}+{h}}{\:\sqrt{\mathrm{2}}},\:{q}=\frac{{k}−{h}}{\:\sqrt{\mathrm{2}}} \\ $$$$ \\ $$$${example}:\:{h}=\mathrm{6},\:{k}=\mathrm{8},\:{r}=\mathrm{2} \\ $$$${p}=\mathrm{7}\sqrt{\mathrm{2}},\:{q}=\sqrt{\mathrm{2}} \\ $$$${s}_{{max}} =\mathrm{11}.\mathrm{9086}\:\checkmark \\ $$$${s}_{{min}} =\mathrm{6}.\mathrm{0829}\:\checkmark \\ $$

Commented by mr W last updated on 12/Aug/21

summary:  α=(((√3)+1)/2), β=(((√3)−1)/2)  p=((k+h)/( (√2))), q=((k−h)/( (√2)))  s_(max/min) =(1/α)((p/(cos θ))±((βr)/( (√(α^2 sin^2  θ+β^2 cos^2  θ)))))  with θ from  ((αq)/(tan θ))±(((α^2 −β^2 )r)/( (√(β^2 +α^2 tan^2  θ))))=βp    (+ for s_(max)  and − for s_(min) )

$${summary}: \\ $$$$\alpha=\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}},\:\beta=\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\mathrm{2}} \\ $$$${p}=\frac{{k}+{h}}{\:\sqrt{\mathrm{2}}},\:{q}=\frac{{k}−{h}}{\:\sqrt{\mathrm{2}}} \\ $$$${s}_{{max}/{min}} =\frac{\mathrm{1}}{\alpha}\left(\frac{{p}}{\mathrm{cos}\:\theta}\pm\frac{\beta{r}}{\:\sqrt{\alpha^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+\beta^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}}\right) \\ $$$${with}\:\theta\:{from} \\ $$$$\frac{\alpha{q}}{\mathrm{tan}\:\theta}\pm\frac{\left(\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right){r}}{\:\sqrt{\beta^{\mathrm{2}} +\alpha^{\mathrm{2}} \mathrm{tan}^{\mathrm{2}} \:\theta}}=\beta{p} \\ $$$$ \\ $$$$\left(+\:{for}\:{s}_{{max}} \:{and}\:−\:{for}\:{s}_{{min}} \right) \\ $$

Answered by mr W last updated on 10/Aug/21

Commented by mr W last updated on 10/Aug/21

example: h=6, k=8, r=2  s_(max) =11.9088  s_(min) =6.0828

$${example}:\:{h}=\mathrm{6},\:{k}=\mathrm{8},\:{r}=\mathrm{2} \\ $$$${s}_{{max}} =\mathrm{11}.\mathrm{9088} \\ $$$${s}_{{min}} =\mathrm{6}.\mathrm{0828} \\ $$

Commented by mr W last updated on 10/Aug/21

Commented by mr W last updated on 10/Aug/21

C(h,k)  D((s/2)cos φ, (s/2)sin φ)  x_P =(s/2)cos φ+(((√3)s)/2)sin φ=s sin (φ+(π/6))  y_P =(s/2)sin φ+(((√3)s)/2)cos φ=s sin (φ+(π/3))  [s sin (φ+(π/6))−h]^2 +[s sin (φ+(π/3))−k]^2 =r^2   [sin^2  (φ+(π/6))+sin^2  (φ+(π/3))]s^2 −2[h sin (φ+(π/6))+k sin (φ+(π/3))]s+(h^2 +k^2 −r^2 )=0  u(φ)s^2 −2v(φ)s+(h^2 +k^2 −r^2 )=0  s=((v(φ)±(√(v^2 (φ)−(h^2 +k^2 −r^2 )u(φ))))/(u(φ)))  with   u(φ)=sin^2  (φ+(π/6))+sin^2  (φ+(π/3))  v(φ)=h sin (φ+(π/6))+k sin (φ+(π/3))

$${C}\left({h},{k}\right) \\ $$$${D}\left(\frac{{s}}{\mathrm{2}}\mathrm{cos}\:\phi,\:\frac{{s}}{\mathrm{2}}\mathrm{sin}\:\phi\right) \\ $$$${x}_{{P}} =\frac{{s}}{\mathrm{2}}\mathrm{cos}\:\phi+\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\mathrm{sin}\:\phi={s}\:\mathrm{sin}\:\left(\phi+\frac{\pi}{\mathrm{6}}\right) \\ $$$${y}_{{P}} =\frac{{s}}{\mathrm{2}}\mathrm{sin}\:\phi+\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\mathrm{cos}\:\phi={s}\:\mathrm{sin}\:\left(\phi+\frac{\pi}{\mathrm{3}}\right) \\ $$$$\left[{s}\:\mathrm{sin}\:\left(\phi+\frac{\pi}{\mathrm{6}}\right)−{h}\right]^{\mathrm{2}} +\left[{s}\:\mathrm{sin}\:\left(\phi+\frac{\pi}{\mathrm{3}}\right)−{k}\right]^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left[\mathrm{sin}^{\mathrm{2}} \:\left(\phi+\frac{\pi}{\mathrm{6}}\right)+\mathrm{sin}^{\mathrm{2}} \:\left(\phi+\frac{\pi}{\mathrm{3}}\right)\right]{s}^{\mathrm{2}} −\mathrm{2}\left[{h}\:\mathrm{sin}\:\left(\phi+\frac{\pi}{\mathrm{6}}\right)+{k}\:\mathrm{sin}\:\left(\phi+\frac{\pi}{\mathrm{3}}\right)\right]{s}+\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${u}\left(\phi\right){s}^{\mathrm{2}} −\mathrm{2}{v}\left(\phi\right){s}+\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{r}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${s}=\frac{{v}\left(\phi\right)\pm\sqrt{{v}^{\mathrm{2}} \left(\phi\right)−\left({h}^{\mathrm{2}} +{k}^{\mathrm{2}} −{r}^{\mathrm{2}} \right){u}\left(\phi\right)}}{{u}\left(\phi\right)} \\ $$$${with}\: \\ $$$${u}\left(\phi\right)=\mathrm{sin}^{\mathrm{2}} \:\left(\phi+\frac{\pi}{\mathrm{6}}\right)+\mathrm{sin}^{\mathrm{2}} \:\left(\phi+\frac{\pi}{\mathrm{3}}\right) \\ $$$${v}\left(\phi\right)={h}\:\mathrm{sin}\:\left(\phi+\frac{\pi}{\mathrm{6}}\right)+{k}\:\mathrm{sin}\:\left(\phi+\frac{\pi}{\mathrm{3}}\right) \\ $$

Commented by mr W last updated on 10/Aug/21

Commented by mr W last updated on 10/Aug/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com