Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 150224 by mnjuly1970 last updated on 10/Aug/21

Answered by Olaf_Thorendsen last updated on 10/Aug/21

I = ∫_0 ^1 (dx/(1+⌊(x/(1−x))⌋))  I = ∫_0 ^(+∞) (1/(1+⌊u⌋)).(du/((1+u)^2 ))  I = Σ_(n=0) ^∞ ∫_n ^(n+1) (1/(1+n)).(du/((1+u)^2 ))  I = Σ_(n=0) ^∞ (1/(n+1))[−(1/(1+u))]_n ^(n+1)   I = Σ_(n=0) ^∞ (1/(n+1))((1/(n+1))−(1/(n+2)))  I = Σ_(n=1) ^∞ (1/(n^2 (n+1)))  I = Σ_(n=1) ^∞ ((1/n^2 )−(1/n)+(1/(n+1)))  I = (π^2 /6)−1

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+\lfloor\frac{{x}}{\mathrm{1}−{x}}\rfloor} \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{1}}{\mathrm{1}+\lfloor{u}\rfloor}.\frac{{du}}{\left(\mathrm{1}+{u}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int_{{n}} ^{{n}+\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}+{n}}.\frac{{du}}{\left(\mathrm{1}+{u}\right)^{\mathrm{2}} } \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}\left[−\frac{\mathrm{1}}{\mathrm{1}+{u}}\right]_{{n}} ^{{n}+\mathrm{1}} \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{{n}+\mathrm{2}}\right) \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)} \\ $$$$\mathrm{I}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right) \\ $$$$\mathrm{I}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 10/Aug/21

  thanks alot mr olaf ...

$$\:\:{thanks}\:{alot}\:{mr}\:{olaf}\:... \\ $$

Answered by Kamel last updated on 10/Aug/21

Ω=∫_0 ^1 (dx/(1+⌊(x/(1−x))⌋))=^(t=(x/(1−x))) ∫_0 ^(+∞) (dt/((1+t)^2 (1+⌊t⌋)))    =Σ_(k=0) ^(+∞) (1/((1+k)))∫_k ^(k+1) (dt/((1+t)^2 ))=Σ_(k=1) ^(+∞) (1/((k)^2 ))−_(ζ(2)^ ) Σ_(k=1) ^(+∞) ((1/k)−(1/(k+1)))    =(π^2 /6)−1

$$\Omega=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}+\lfloor\frac{{x}}{\mathrm{1}−{x}}\rfloor}\overset{{t}=\frac{{x}}{\mathrm{1}−{x}}} {=}\int_{\mathrm{0}} ^{+\infty} \frac{{dt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} \left(\mathrm{1}+\lfloor{t}\rfloor\right)} \\ $$$$\:\:=\underset{{k}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{1}+{k}\right)}\int_{{k}} ^{{k}+\mathrm{1}} \frac{{dt}}{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }=\underset{\zeta\left(\mathrm{2}\overset{} {\right)}} {\underset{{k}=\mathrm{1}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left({k}\right)^{\mathrm{2}} }−}\underset{{k}=\mathrm{1}} {\overset{+\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\mathrm{1}}\right) \\ $$$$\:\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 10/Aug/21

    tashakor and mercey....

$$\:\:\:\:{tashakor}\:{and}\:{mercey}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com